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Abstract

For the last five decades, optical lithography has been used universally for the man-
ufacture of integrated circuits. The drive towards smaller circuit feature size, and the
resulting increase in resolution of lithography systems, has been achieved by chang-
ing the source type. The original 300− 400 nm discharge lamps have been replaced
with more powerful and monochromatic excimer lasers, operating at user-selectable
Ultra-Violet (UV) wavelengths from 157 − 351 nm. The success of UV lithography
is due, in part, to the development of industrialized, line narrowed excimer lasers.
However, the line narrowing process, along with the intrinsic coherence properties of
the laser, results in a source with a considerable amount of spatial coherence. These
partially coherent sources are complicated to model. Partially coherent image for-
mation with two-dimensional intensity fields requires evaluating four-dimensional
integrals. Thus calculations are complex, slow to process and place demands on sys-
tem memory. The motivation behind this thesis is an improved understanding of the
effects of spatial coherence in optical lithography, including beam homogenization in
wafer-stepper systems. In this thesis, we expand the Elementary Function Method, a
process similar to coherent mode decomposition, to develop a numerical model of a
partially spatially coherent source. We design an experiment to measure the spatial
coherence of a partially coherent laser source and present our results. The numerical
model is tested on a theoretical Gaussian Schell-model source, and then applied to
the excimer source. We examine the traditional method for beam conditioning, the
imaging homogenizer, and develop a model of the physical process involved in beam
homogenization. Our results show that the imaging homogenizer is designed for use
with spatially incoherent sources, where it performs well. However, if the source in-
cident on the homogenizer has any degree of spatial coherence, the intensity output
is highly non-uniform.
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Preface

From the late 1960’s, when integrated circuits had linewidths of 5 µm, to the last year
when the 45nm node threshold was crossed, optical lithography has been used uni-
versally for manufacturing. This dominance of optical lithography in production is
the result of a worldwide effort to improve optical imaging systems and resists. The
International Technology Roadmap for Semiconductors [1] (ITRS, or The Roadmap)
has become a forum for listing and updating lithography requirements. It is spon-
sored by the five leading chip manufacturing regions in the world: Europe, Japan,
Korea, Taiwan, and the United States. Its goal is to ensure cost-effective advance-
ments in the performance of the integrated circuits and the products that use them.
Its milestones, the “nodes”, are the half-pitch of the smallest dimensions that need
to be patterned in every generation of microelectronic devices. The industry has fol-
lowed an impressive path with node dimensions decreasing steadily for the last 50
years. This uninterrupted improvement is part of “Moore’s Law”, named after In-
tel co-founder Gordon Moore, and states that the number of transistors that can be
placed inexpensively on an integrated circuit will double every two years [2]. Ac-
cording to the ITRS, nodes are expected to reach 11 nm by 2022.

Although lithography system costs increase as minimum feature size on a semi-
conductor chip decreases, optical lithography remains attractive because of its high
wafer throughput and relatively low cost, relative to alternative technologies such as
X-ray lithography and E-beam lithography.
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Preface

Thesis Motivation

The focus of this project is an improved understanding of the effects of spatial co-
herence in optical lithography, including beam homogenization in wafer stepper sys-
tems. Excimer lasers operating in the Deep Ultra-Violet (DUV) have been used in
lithographic systems for over a decade. Their high brightness and limited spatial and
temporal coherence make them an attractive source for circuit patterning. However,
the wide bandwidth of excimer lasers causes problems in designing DUV photolitho-
graphic optics. Line-narrowing processes reduce chromatic aberration in refractive
optical systems, but have the disadvantage of increasing coherence and causing prob-
lems with interference and speckle. Increased spatial coherence brings problems with
interference in conventional beam homogenization systems. Optical modelling of
such partially coherent sources would be beneficial in the design of efficient beam
homogenization techniques.

Thesis Organisation

The primary focus of this work is the development of a method to simplify the equa-
tions used to propagate partially coherent light through imaging systems. In Chapter
1, the typical components of a lithographic imaging system are examined. In Chapter
2, we look at the origin of coherence, arriving at a definition for temporal and spatial
coherence. Mathematical methods for the propagation of spatially partially coherent
light are discussed in Chapter 3, where we arrive at a modal approach of decompos-
ing the beam into elementary functions which are then propagated. In order to make
this beam model system-specific, spatial coherence measurements are necessary. In
Chapter 4, we present a method to measure the spatial coherence of a laser source
and the experimental results. In Chapter 5, the Elementary Function method is veri-
fied numerically using the example of a Gaussian Schell-model beam, and the model
is then applied to a real excimer laser beam. In Chapter 6, the Elmentary Function
Method is extended to include beam homogenization optics, and the consquences of
imaging with a partially coherent source are discussed. A brief summary of results
including the conclusions drawn from this work are presented in Chapter 7.
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Chapter 1

Introduction to Lithographic

Systems

1.1 Source

Until the late 1980s, optical lithography was performed with high-pressure Hg dis-
charge lamps operating at 436 nm (G line) and 365 nm (I line). The transition to shorter
wavelengths was first performed with Hg discharge lamps operating at ∼ 250 nm,
but these sources were soon replaced with more powerful and monochromatic ex-
cimer lasers. Excimer lasers are a class of very efficient and powerful pulsed ultra-
violet lasers operating in a gas-filled optical cavity. They are typically used in high
resolution material processing and operate at user-selectable UV wavelengths from
157− 351 nm depending on the lasing molecule (e.g. KrF, ArF, XeCl). In fact, the term
excimer is outdated; modern lasers of this type are strictly speaking exciplex lasers. Ex-
cimer, originating from excited dimer, refers to the compound of two identical species
which exists only in the excited state. Excited diatomic molecules such as Xenon (Xe2)
were originally used as the laser gas. Modern excimer lasers use an excited complex
of rare gas and halogen - such as argon and flouride - and are exciplex lasers. Cur-
rently, high resolution lithographic systems are in place, operating at wavelengths of
248 nm, 193 nm and 157 nm, in the Deep-Ultraviolet (DUV) [3–7].

4



Chapter 1. Introduction to Lithographic Systems

The success of 248 nm lithography is due, in part, to the development of reliable,
industralized, line narrowed excimer laser sources. Their most important properties,
which set an excimer laser apart from most other lasers and which makes them most
suitable for lithographic systems, are their high brightness and limited temporal and
spatial coherence. The system in this study incorporates a 248 nm KrF excimer laser
system. KrF excimer lasers are often line-narrowed for use in lithographic systems.
Line-narrowing is carried out to reduce the spectral range of the laser, minimising
chromatic aberration. Freely running KrF lasers have a natural bandwidth of approx-
imately 300 pm, which is too high for high-resolution wafer steppers. All-refractive
optics require bandwidths of < 1.0 pm, and even catadioptric, moderate-NA systems
require bandwidths < 100 pm [8]. Also, building an illumination system at 248 nm is
tricky. The choice of materials with adequate transmission is limited; fused silica and
calcium fluoride are commonly used. They are close in refractive index and disper-
sion, thus chromatic correction requires high optical power lenses that are difficult to
fabricate and align. The solution to this is to narrow the spectral bandwidth of the
laser, rather than achromatize the lens.

Line-narrowing is most commonly achieved by inserting intra-cavity wavelength
dispersive optical elements into the laser cavity. The narrowband output can be
tuned over a region which is typically close to the free running bandwidth of the
laser. The 248 nm laser used in this system has been line-narrowed to 10 pm. While
line-narrowing processes reduce chromatic aberrations in optical systems, they also
increase coherence, which introduces problems with interference and speckle.

An analysis of lithography systems with excimer lasers can be found in [3] and [9].

1.2 Illumination System

The illumination system contains the optics used to homogenize the beam and focus
it on the reticle holding the desired pattern. These systems comprise many elements
and are expensive to produce (Figure 1.1). Excimer lasers do not have a uniform light
intensity distribution in the plane perpendicular to the optic axis. The beam exit-
ing the laser cavity has an approximately Gaussian intensity profile along the short
axis; the intensity profile is approximately top-hat in the long axis of the beam. For
lithographic applications, it is desirable that the illumination is uniform in the imag-
ing plane, requiring ±2 % uniformity. For uniformity of this level, it is necessary to
condition the beam [10].
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Chapter 1. Introduction to Lithographic Systems

Figure 1.1: Lithographic objective from US Patent 5,805,344 (1998) with image side
NA = 0.56, image field size 15× 15mm2, working wavelength 248 nm, reduction ratio
0.25.

To date, various methods have been proposed for beam-shaping and homoge-
nization: intensity modification of Gaussian beams by phase filtering or diffraction
gratings [11–14], acousto-optical effects [15], saturable absorbers [16], a combina-
tion of a phase plate and light-conducting glass rods [17], and diffractive optical ele-
ments [18–20].

Most modern beam homogenizers fall into one of two categories: scramblers or
beam-folders. Scramblers create a uniform beam by randomly mixing the laser beam,
averaging out any intensity variations, e.g. using an incoherent fibre bundle, or a fly’s
eye lens [21], [22]. Scramblers are relatively inexpensive, but have several drawbacks
including high divergence and low throughput. Beam-folding homogenizers use a
different technique of overlapping multiple beam segments to average out intensity
fluctuations [23–26]. This means that a loss in power density in one area of the beam
does not affect the uniformity of the mask exposure plane. The advantages of these
shapers are the independence from entrance intensity profile and wide spectrum of
wavelengths. However, the periodic structure and the overlapping of beamlets pro-
duce interference effects when used with spatially highly coherent light. Neverthe-
less, in some cases, successful homogenization with these elements can be achieved
with the consideration of physical optics, with the usage of additional elements like
random diffusers, and, in certain cases, averaging over many exposures.

The beam homogenizer in this system is a Suss MicroOptics imaging homogenizer,
incorporating two microlens arrays and a spherical lens (Figure 1.2). The square mi-
crolens arrays divide the incident beam into beamlets. These beamlets are then passed
through a lens to be overlapped in the homogenization plane located at the back focal
plane of the spherical lens. This lens, which Suss MicroOptics refer to as a “Fourier
lens”, causes the parallel bundles of rays to converge in the homogenization plane.
An overview of beam homogenizing techniques can be found in [27]. A more de-
tailed analysis of beam homogenization in lithographic applications can be found
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Figure 1.2: Layout of an imaging microlens beam homogenizer. Image courtesy of
Suss MicroOptics.

in [28]. The effects of beam homogenization on partially spatially coherent sources
will be investigated in Chapter 6.

1.3 Reticle

This is the mask containing information on the desired pattern to be projected onto
the silicon layer. The mask (or reticle) is made up of lines, spaces and contacts. A
line is an opaque section which light cannot pass through. A space is a clear sec-
tion which is transparent to light. A contact is an clear section, transparent to light,
surrounded on all sides by an opaque region. A combination of these features make
up a standard reticle. Photomasks are fabricated with techniques similar to those
used in wafer processing. A photomask blank, consisting of an opaque film (usually
chromium or chromium-containing compounds) deposited on a glass or quartz sub-
strate, is covered with resist. The resist is exposed according to the circuit pattern, is
then developed, and the exposed opaque material is then etched. As many as thirty
masks are used to produce the various layers on an Integrated Circuit (IC). The pat-
tern creates dark and light regions that correspond to physical elements - typically
part of transistors or connections between them - to be reproduced on each chip on
the wafer. In early lithography systems, the transfer was 1–1 between the mask and
the wafer for every layer, and the pattern on the mask was often produced through a
lithography process - the reticle containing the circuit layout is patterned onto a mask
which in turn is projected onto the wafer surface. The invention of the wafer stepper
made this process more efficient: the circuit patterns are now stepped directly onto
the wafer with a 4–1 or 5–1 reduction. The most common size for reticles today is the
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6”/152.4 mm (0.25”/6.35 mm thick) format [8].

1.4 Projection Lens

The light is directed onto the silicon wafer using either a stepper or scanner system.
The stepper moves or "steps" from individual areas on the wafer, exposing each one in
turn. Previous generations of photolithographic equipment exposed the entire wafer
at once. A stepper, working on a limited area, is capable of higher resolution. A
scanner is a type of stepper which moves the wafer and reticle with respect to each
other during the exposure, as a way of increasing the size of the exposed area. In
a scanner system, instead of exposing the entire field at once, the exposure is made
through an "exposure slit", that is as wide as the exposure field but only a fraction
of its length. The image from the exposure slit is then scanned across the exposure
area. The advantage of the scanning technique is that the optical properties of the
projection lens can be optimized in the area through which the image of the projection
slit passes, while optical aberrations outside this area can be ignored [29], [30].

1.5 Photoresist

In lithographic systems, the reticle is illuminated and the wafer is exposed to UV light
through the mask. The wafer is coated with a layer of photosensitive chemical, or
photoresist, which is sensitive to light. Photoresists are broadly classified as positive
or negative. A positive resist has low solubility in developer and becomes soluble
by exposure to light. Conversely, negative resists are soluble in developer, and lose
their solubility upon exposure to light. Prior to the invention of the wafer stepper,
negative resists, based on poly-isopropene with azide additives, were predominately
used. Since the late 1970’s, novolak positive resists have been used for most critical
applications. In general, the advantages of the novolak positive resist are lack of
swelling during the developer stage, and the use of aqueous developers. Negative
resists require organic solvent developer and the resist can swell during the developer
stage.

Resists are usually optimized for application over specific wavelength ranges. For
cost-effective manufacturing it is desirable to have efficient photoresist photochem-
istry: low exposure dosage increases exposure-tool productivity. For high resolution
patterning, resist films must be exposed with a high degree of uniformity from the
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top of the resist film to the bottom. Light will not penetrate the photoresist properly
or evenly if the resist film is too optically absorbent.

1.6 System Resolution

The resolution of an optical projection lithography system is given by a modification
of the Rayleigh resolution criterion

R =
k1λ

NA
(1.1)

where R is the resolution, λ and NA are the exposure wavelength and numerical aper-
ture (typically 0.8 or higher) of the lithographic system respectively. NA is defined as
nsinθ, where n is the refractive index of the medium above the photoresist, and θ is
the largest semi-angle of converging rays subtended at the photoresist. The k1 fac-
tor (replacing the 0.61 of the classical Rayleigh formula for incoherent imaging) is a
system-specific proportionality factor which depends on the coherence of illumina-
tion, the use of anti-reflection coatings above or below the photoresist, and also on
resist parameters, e.g. baking times and diffusion characteristics. In the last 20 years,
all three of these quantities have been modified in an effort to reduce the R, or the
critical dimension. NA has grown from 0.5 to 1.35 (increased due to liquid immersion),
λ has been reduced from 365 nm to 193 nm, and k1 has been reduced from 0.7 to 0.27.
This has led to a dramatic reduction in the critical dimension: R has shrunk from 500
to 45 nm.

As the resolution of lithographic systems increases, there is a trade-off with the
depth of focus (DOF) of the system. The DOF of an incoherent optical system is given
by

DOF = ±2λF2 (1.2)

where F is the system f-number, F = 1/2NA. Rewritten in terms of numerical aper-
ture, we get

DOF = ± λ

2NA2 (1.3)

Over this range of focus, the peak intensity of a point object focused by a lens remains
within 20 % of the peak value for best focus. Typical values for 180 nm lithography
are λ = 248 nm and NA = 0.6, which results in a Rayleigh depth of focus of±0.34 µm,
i.e. the distance between the lens and the wafer needs to be controlled to this amount.
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Just as the Rayleigh criterion for resolution was modified for lithographic systems,
Equation 1.3 can be modified to give

DOF = k2
λ

NA2 , (1.4)

where k2 is a system-specific, normalizing factor.

A DOF greater than 500nm is highly desired, since wafers are not perfectly flat
and the photoresist usually has a thickness of several hundred nanometers. As DOF
is inversely proportional to the square of the numerical aperture, increasing the NA
to improve resolution quickly decreases the depth of focus. In 1979, the state-of-the-
art lens had a resolution of 1.25 µm, a ±0.75 µm depth of focus, a numerical aperture
of 0.28, and imaged at the mercury g-line [8]. These figures produced values of 0.8
and 0.13 for k1 and k2 respectively. Lithography today routinely operates at values
of k1 between 0.5 and 0.6. Depths of focus requirements have decreased to ±0.2 µm,
mainly due to the use of chemical-mechanical polishing. The combination of focus
and exposure allowances is known as the process window. Modern lithographic sys-
tems must find a balance between the need for higher resolution production and the
difficulties involved with operating a system with a small depth of focus [31].

Further development and performance analysis of lithographic systems incorpo-
rating excimer lasers has been carried out by Jain [9], Liu [32], Welford [33], Chen [34],
Ito [35], and Brunner [36].

1.7 Vector Effects in High NA Lithography

In early models of lithographic systems, diffraction theory has been treated math-
ematically with a scalar approach based on the Fresnel-Kirchoff formulation [37].
Scalar theory is valid for a system numerical aperture (NA) of 0.50 or less; NA values
higher than this, and certainly > 0.70, require a vectorial approach. Early lithographic
systems were modelled using scalar mathematics producing an “aerial image”: an im-
age of the photomask projected directly onto the plane of the wafer. The aerial image
is a crucially important quantity in lithography for governing how well a developed
photoresist structure replicates a mask design. It is also important in optical design
as it gives an indication of how the intensity of light is distributed in the image space
of a projection lens system. The aerial image is usually generated using scalar diffrac-
tion theory. Today, the system NA has grown from 0.5 to as high as 1.35 as a result
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of liquid immersion lithography. Here, the space between the optical system and the
wafer is filled with a transparent liquid of index n, reducing the effective wavelength,
or alternatively increasing the numerical aperture. Today’s immersion systems use
water, which at the operating wavelength of 193 nm, has n193nm = 1.44, leading to
NA = 1.35.

Scalar theory does not properly take into account the effects of oblique directions of
propagation of light in high NA systems. As the system pupil diameter approaches
the pupil-to-image distance, or the NA is greater than 0.50, propagation angles of
the electric field become significant and traditional scalar models require correction.
Since scalar methods treat all illumination as having the same polarization, with all
polarization vectors perpendicular to the plane of incidence, the significance of prop-
agation angles of the electric field cannot be accounted for. In a vector model the
electromagnetic field is treated as a vector quantity. However, scalar models can be
corrected for increased NA. In 1992, Cole et. al [38] presented an amended scalar the-
ory, neglecting paraxial approximations. The paraxial approximation assumes that
the angles of the light rays to the optic axis are sufficiently small that small angles
approximations can be made. By not imposing this approximation, scalar theory can
be extended to the limit of its capabilities and present quite a good representation of
a higher NA lithographic system, without the need for vectorial diffraction.

In 2003, Adam et. al. [39] presented an adaptation of the Hopkins’ Method (see
Section 3.1), based on previous work by Mansuripur [40], Yeung et. al. [41] and Flag-
ello [42], to include polarization effects at high NA. The Transmission Cross Coef-
ficient (TCC), a scalar quantity used in the Hopkins formulation to describe light
propagation and image formation in the projection printing system, is replaced by
a generalized vector TCC, which includes vectorial addition of the electromagnetic
fields inside a thin film.

In the interest of simplicity, and recognising the complexity of dealing with par-
tially coherent fields, in this study we will ignore vectorial effects and approximate
our theory using scalar diffraction methods.
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Coherence Theory

Coherence can be defined as the degree to which electromagnetic radiation or any
other oscillating quantity maintains a near-constant phase relationship, both tempo-
rally and spatially. Here we are dealing with optical fields, i.e. electromagnetic fields
oscillating in the optical frequency range.

The earliest investigations of coherence appear in the mid to late 1800s by Verdet
and Lord Rayleigh in their studies of “coronas” or Fraunhofer rings [43], [44]. In
the 1890s, Michelson established the connection between the visibility of interference
fringes and intensity distribution which later shaped our understanding of the the-
ory of partial coherence. The work of von Laue, Berek, Lakeman and Groosmuller,
Schrödinger, and Wiener, though not solely focused on the area, contributed to early
theories of coherence. Van Cittert defined a ‘degree of coherence’ and calculated func-
tions expressing the correlation between the (complex) amplitudes at any two points.
Zernike [45] generalized these proofs by employing a simpler definition of partial co-
herence. The van Cittert-Zernike theorem provided the basis for all subsequent work
on spatial coherence theory, and will be discussed further in Section 2.5. The theory
of partially coherent fields received its modern formulation through several funda-
mental papers by Emil Wolf and Leonard Mandel. A summary of these can be found
in reference [46].

In order to understand coherence, its causes and its effects, we must first be famil-
iar with stochastic processes. A stochastic process is used to describe changes that
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are non-deterministic and random in character. In these situations, instead of assign-
ing deterministic values to the optical field for each point in space and time, statis-
tical measurements such as averages, standard deviations and correlations are used
to describe the field. First order characteristics of optical fields refer to the statistical
behaviour of the field observed in one point in space and time, and can be character-
ized by the probability density function of the electric field component, providing the
probability for the electric field component to be within a certain interval.

In statistical optics, the second order statistical properties of a field are often used
to characterise partially coherent fields. By ‘second order’ we mean that the field is
evaluated through correlation between the field in two separate coordinates. By us-
ing correlations it is possible to specify the randomness of the field. In the following
sections we will investigate correlations of optical fields over time, known as the tem-
poral coherence, and correlations over spatial coordinates, referred to as the spatial
coherence. To completely understand these concepts, we look at two fundamental
theorems: the Wiener-Khintchine theorem, which relates temporal coherence to the
spectrum of the optical field, and the van Cittert-Zernike theorem relating spatial co-
herence to illumination using incoherent sources.

2.1 The Analytic Signal

The theory of partial coherence, whether based on a classical or a quantum descrip-
tion of the optical field, is generally formulated in terms of space-time correlation
functions [37]. The simplest correlation function, the mutual coherence function, is the
correlation of the space and time-varying electric field, or, more conveniently, the an-
alytic signal (i.e. the positive part of the field). The mathematics of the space-time
approach become unwieldy, however, when dealing with the interaction of light with
matter. The response of matter to an incident field is most naturally described by
frequency-dependent response functions such as the dielectric constant, the refrac-
tive index, or the magnetic susceptibility. The dominant effects frequently arise from
the statistical features of the medium itself rather than of the incident light, for ex-
ample, when a laser beam propagates through the atmosphere or when it is scattered
from a rough surface (giving rise to speckle). In this case, it is more useful to take a
single-frequency description. This space-frequency approach was introduced by Emil
Wolf [47] and developed in collaboration with Leonard Mandel [48]. For the purpose
of this study, we adopt the original space-time approach [37].
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Chapter 2. Coherence Theory

In the scalar theory of light, the electromagnetic field is fully described by a real
function of space and time, V(r)(x, t). For any practical light beam, V(r)(x, t), the
real disturbance, is a random function of space x and time t and any one V(r) may
be regarded as a typical realization of an ensemble consisting of all realizations. The
fluctuation is a result of the atomic processes that give rise to the emission of light and
is present even in a laser. Each member of the ensemble is a possible realization of,
and shares all the attributes of, the optical field. Figure 2.1 shows a typical realisation
(a) as a function of time for a fixed point in space and (b) as a function of space for one
point in time. Although the field is purely real, it is mathematically more convenient
to describe it by a complex function, V(x, t), called the analytic signal, which can be
found from V(r)(x, t) in the following way.
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Figure 2.1: The analytic signal: a typical realisation (a) as a function of time for a fixed
point in space, and (b) as a function of space for one point in time.

Let v(x,ν) be the Fourier transform of V(r)(x, t):

v(x,ν) =
∫ ∞

−∞
V(r)(x, t)exp(2πiνt)dt (2.1)
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The analytic signal V(x, t) is defined by

V(x, t) =
∫ ∞

0
v(x,ν)exp(−2πiνt)dν (2.2)

V(x, t) contains only positive frequencies and this gives rise to its analytical proper-
ties. For our purposes it is sufficient to say that V(x, t) is a complex description of a
real disturbance [37].

If the light is narrowband, i.e. it has significant amplitude only for frequencies in
the region of the mean frequency ν̄, then the analytic signal can be written as the prod-
uct of a slowly varying complex function called the time-varying complex amplitude
A(x, t) and a rapidly varying term

V(x, t) = A(x, t)exp(−2πiν̄t) (2.3)

Therefore, for narrowband fields, the time-varying complex amplitude, which repre-
sents the envelope and phase of the oscillatory term, is an adequate descriptor of the
field. The signal randomly fluctuates in space and time and so it must be described
in statistical terms. The mutual coherence function is defined as

Γ(x1,x2; t1, t2) = 〈V∗(x1, t1)V(x2, t2)〉 (2.4)

where 〈. . .〉 denotes an average over the ensemble of possible realizations. This func-
tion describes the correlation of the light at point x1 at time t1 with that at point x2

at time t2. It has a relatively large value when the two signals are statistically similar
and is zero if they are statistically independent, (assuming 〈V〉= 0). If V(x, t) is statis-
tically stationary in time (i.e. its probability distributions are unaffected by a change
in the time origin), then Γ depends only on the difference t2 − t1 = τ, thus

Γ(x1,x2,τ) = 〈V∗(x1, t)V(x2, t + τ)〉 ≡ Γ12(τ). (2.5)

It is often convenient to use a normalized version of the mutual coherence function.
We define the complex degree of coherence, γ(x1,x2,τ) or simply γ12(τ) as

γ12(τ) =
Γ12(τ)√

Γ11(0)Γ22(0)
=

Γ12(τ)√
I1 I2

(2.6)

This normalized function has the property that 0 ≤ |γ12(τ)| ≤ 1. A value of zero

15



Chapter 2. Coherence Theory

indicates an absence of coherence, or incoherence, between the field at points 1 and 2,
and a value of 1 indicates a completely coherent field. Any value of γ between these
limits indicates a level of partial coherence.

The quantity commonly used to describe the intensity profile and coherence of
a source is known as the cross-spectral density, W(x1,x2,ν) or simply W12(ν), which
is a correlation of the Fourier components of the analytic signal. The cross-spectral
density is an important quantity when imaging with light that is partially spatially
coherent as it contains information on the correlation between pairs of points in such
sources. This will be explored further in Section 2.6.

2.2 Temporal Coherence

Figure 2.2: The Michelson interferometer: At least one of the mirrors is moveable,
introducing a tunable path length difference.

To describe temporal coherence, we consider a beam from a point source σ, divided
into two beams in a Michelson interferometer as in Figure 2.2. The two beams are
united after a path delay ∆s has been introduced between them such that

∆s = c∆t (2.7)
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where c = velocity of light. If ∆s is sufficiently small, interference fringes are formed
in the observation plane. These fringes are observed due to the temporal coherence
occurring between the two beams, since the fringe contrast depends on the time delay
∆t introduced between them. In general, interference fringes will be observed if

∆t∆ν ≤ 1 (2.8)

where ∆ν is the effective bandwidth of the light. The time delay

∆t ∼ 1
∆ν

(2.9)

is known as the coherence time of the light and the corresponding path c∆t is the co-
herence length, or more precisely, the longitudinal coherence length of the light. Since
v = c/λ, where λ is the wavelength, ∆ν ∼ c∆λ/λ̄2, the expression for the coherence
length may also be written as

∆l ∼ (
λ̄

∆λ
)λ̄ (2.10)

where λ̄ is the mean wavelength. The coherence time of the light, ∆t, is a measure of
the time interval in which appreciable amplitude correlations and phase correlations
of the light vibrations at a particular point in an optical field will persist.

This phenomenon can be explained by using the concept of correlations. We can
consider the source as emitting a succession of slowly modulated wave trains, the
mean frequency of which coincides with the mean frequency of the light, and whose
duration is of the order of the reciprocal bandwidth of the light, i.e. of the order
of the coherence time in Equation 2.9. Each wave train incident on the beamsplitter
splits into two wave trains of the same form but with a reduced amplitude. In the
observation plane, the wave trains of the two partial beams become superposed after
a time delay has been introduced between them. There will be a strong correlation
between the fluctuations in the two beams arriving at the observation plane if the
time delay introduced is short compared to the coherence time of the light, ∆t. There
is effectively no correlation between them when the introduced time delay is much
greater than the coherence time. Thus we can assume that the formation or absence of
interference fringes in the observation plane is a result of the correlation or lack of cor-
relation between the fluctuations of the two partial beams arriving at the observation
plane [48].
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2.3 The Wiener-Khintchine Theorem

The Wiener-Khintchine theorem expresses the power density of a stationary random
process in terms of the autocorrelation function. One of the reasons for its importance
is that for random signals the Fourier transform may not exist, and the autocorrelation
is directly measurable.

Let
V(r)

T (P, t) =
∫ ∞

−∞
vT(P,ν)e−2πiνtdν (2.11)

be the Fourier integral representation of the truncated real function V(r)
T , which is a

function of position P and time t. Applying the inverse Fourier transform we get

vT(P,ν) =
∫ ∞

−∞
V(r)

T (P, t)e2πiνtdt, (2.12)

and it follows that

∫ ∞

−∞
V(r)

T (P1, t + τ)V(r)
T (P2, t)dt =

=
∫ ∞

−∞
V(r)

T (P2, t)
[∫ ∞

−∞
vT(P1,ν)e−2πiν(t+τ)dν

]
dt

=
∫ ∞

−∞

[∫ ∞

−∞
V(r)

T (P2, t)e−2πiνtdt
]

vT(P1,ν)e−2πiντdν

=
∫ ∞

−∞
vT(P1,ν)v∗t (P2,ν)e−2πiντdν. (2.13)

If we now divide both sides of 2.13 by 2T, take the average (denoted by a bar) of
vT(P1,ν)v∗t (P2,ν)/2T over the ensemble of random functions V(r), and proceed to the
limit T→∞, we find

〈V(r)(P1, t + τ)V(r)(P2, t)〉 =
∫ ∞

−∞
W12(ν)e−2πiντdν, (2.14)

where

W12(ν) = lim
T→∞

[
vT(P1,ν)v∗T(P2,ν)

2T

]
(2.15)
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The function W12(ν) may be called the mutual spectral density, or the cross-spectral den-
sity, of the light vibrations at P1 and P2. Equation 2.14 shows that the real correla-
tion function 〈V(r)(P1, t + τ)V(r)(P, t)〉 and the mutual spectral density W12(ν) form a
Fourier transform pair.

Moving now to the complex representation. Let

VT(P, t) = 2
∫ ∞

0
vT(ν)e−2πiντdν (2.16)

be the analytic signal associated with V(r)
T (P, t). Following an analysis similar to that

above, again letting T→∞, we arrive at

Γ12(τ) = 〈V(P1, t + τ)V∗(P2, t)〉 = 4
∫ ∞

0
W12(ν)e−2πiντdν. (2.17)

In the case when P1 = P2 = P, Equations 2.14 and 2.17 imply that

〈V(r)(P, t + τ)V(r)(P, t)〉 =
∫ ∞

−∞
S(P,ν)e−2πντdν, (2.18)

and

〈V(P, t + τ)V∗(P, t)〉 = 4
∫ ∞

0
S(P,ν)e−2πντdν, (2.19)

where S(P,ν) is the spectral density at the point P. Equation 2.18 shows that the real
correlation function 〈V(r)(P, t + τ)V(r)(P, t)〉 and the spectral density S(P,ν) form a
Fourier transform pair. This result is the optical equivalent of the Wiener-Khintchine
Theorem of the theory of stationary random processes.

In Section 2.6, we will see that the cross-spectral density and its inverse are gen-
eralized forms of the Wiener-Khintchine theorem. A more detailed analysis of this
relation can be found in [48].

2.4 Spatial Coherence

When considering spatial coherence, it is useful to consider an interference experi-
ment of the Young’s double slit type, with quasi-monochromatic light from an ex-
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tended thermal source. The term quasi-monochromatic describes light that is (a) nar-
rowband, i.e.

Γ12(τ) = 〈A∗(x1, t)A(x2, t + τ)〉exp(−2πiν̄τ) (2.20)

and (b) has a long temporal coherence length compared with the path differences τ

in the experimental arrangement in Figure 2.2, i.e.,

〈A∗((x1, t)A(x2, t + τ)〉 = 〈A∗((x1, t)A(x2, t)〉 = J(x1,x2) (2.21)

where J(x1,x2) or simply J12 is called the mutual intensity. This is a special case, τ = 0,
of the mutual coherence function, J12 = Γ12(0). Note that light that is considered
quasi-monochromatic in this experiment may not be in another arrangement involv-
ing larger path differences.

Figure 2.3: Spatial coherence illustrated by Young’s double-slit interference experi-
ment

Consider the set-up in Figure 2.3. If the pinholes P1 and P2 are sufficiently close to
each other, interference fringes will be observed at the point Q(x) on the screen. These
fringes are a manifestation of spatial coherence between the light reaching Q(x) from
the two pinholes, since the fringe contrast depends on the spatial separation of the
pinholes. Interference will be observed near Q(x) if

∆θ∆l ≤ λ̄ (2.22)

where ∆θ is the angle that the distance P1P2 of separation between the pinholes sub-

20



Chapter 2. Coherence Theory

tends at the source and
λ̄ =

c
ν̄

(2.23)

is the effective or mean wavelength of the light. In order to observe interference
fringes at or near Q(x), the pinholes must lie within a certain region known as the
coherence area, ∆A:

∆A ≈ (r∆Θ)2 ≈ r2λ̄2

(∆l)2 =
c2r2

ν̄2S
, (2.24)

where r denotes the distance between the plane of the source and the plane containing
the pinholes (see Figure 2.3), and S = ∆l2 is the area of the source. The solid angle ∆Ω
which the area subtends at the source is given by

∆Ω ≈ ∆A
r2 ≈

c2

ν̄2S
(2.25)

The intensity I(x) at the point Q(x) is

I(x) = 〈|K1V(x1, t− s1

c
) + K2V(x2, t− s2

c
)|2〉 (2.26)

where K1 and K2 are imaginary propagation constants and the medium between P
and Q is non-dispersive. This expression can be simplified to give

I(x) = I1(x) + I2(x) + 2|K1K∗2 | Re{J12 exp(−2πiν̄
s2 − s1

c
)} (2.27)

where I1 and I2 are the intensities at x due to slit P1 only and slit P2 only, respectively.
A normalized form of J12 is defined as

µ′12 =
J12√
J11 J22

= γ12(0) (2.28)

where µ′12 is called the complex coherence factor. This is essentially the same as the
complex degree of coherence, γ12(τ). Using the complex coherence factor, we can
rewrite Equation 2.27, the intensity in the observation plane, as

I(x) = I1(x) + I2(x) + 2
√

I1(x)I2(x) |µ′12| Cos [2πν̄(
s2 − s1

c
) + β12] (2.29)
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where β12 = arg µ′12. The fringe visibility V is defined as

V =
Imax − Imin

Imax + Imin
(2.30)

and can also be written as

V =
2
√

I1 I2

I1 + I2
|µ′12| (2.31)

From this we see that the fringe visibility equals the complex coherence factor if I1 =

I2. The quantity µ′12 describes the degree of spatial coherence of the light at points P1

and P2, separated by a distance d. If |µ′12| = 1, then the light is spatially coherent and
the fringes have unit visibility; if |µ′12| = 0, the light is said to be spatially incoherent
and no fringes at all are seen. It follows that Young’s experiment can be used to
measure the spatial coherence of a light source. Methods based on this principle will
be discussed further in Section 4.1.

2.5 The van Cittert-Zernike Theorem

Figure 2.4: The van Cittert-Zernike Theorem

The van Cittert-Zernike theorem can be viewed as the spatial equivalent of the Wiener-
Khintchine theorem. It relates the field correlations at two points in the field to the
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properties of a spatially incoherent, quasi-monochromatic, planar source. The most
common use of the theorem is to estimate the spatial coherence from an incoherent
source of a specific dimension.

If we know the mutual intensity J12 for all points on some surface Σ1, then we can
find the mutual intensity for all pairs of points on another surface separated from the
first by free space using the Huygens-Fresnel formula.

J(x′1,x′2) =
∫

Σ1

∫
Σ1

J(x1,x2) exp[ik̄(s2 − s1)]
Λ∗1Λ2

s1s2
dx1dx2 (2.32)

where Λ1 and Λ2 denote the obliquity factors, which are proportional to the ampli-
tudes of secondary waves propagating in various directions according to Huygens’
principle. Consider the layout in Figure 2.4 in which an incoherent primary source
illuminates a screen. We wish to find the mutual intensity and complex coherence
factor at the screen. Once again, the light is assumed to be quasi-monochromatic. The
source is described by a mutual intensity

J(x′1,x′2) = δ(x1 − x2)S(x1) (2.33)

where δ is the Dirac delta function and S(x1) is the intensity of the source. Substi-
tuting Equation 2.33 into 2.32 gives a general statement of the van Cittert-Zernike
theorem:

J(x′1,x′2) =
∫

Σ1

S(x1) exp[ik̄(s2 − s1)]
Λ∗1Λ2

s1s2
dx1 (2.34)

with distances s1 and s2 representing the distance from source to observation plane,
as in Figure 2.4. The complex coherence factor µ′12 is simply a normalized version of
this:

µ′12 =
J(x′1,x′2)√
I(x′1)I(x′2)

(2.35)

If the observation plane lies in the far field of the source, µ′12 depends only on the
coordinate differences x′= x′1− x′2 and is essentially the normalized Fourier transform
of the source intensity

µ′12(x
′) =

eiψ
∫

Σ S(x) exp(−ik̄
z · x · x′)dx∫

Σ S(x)dx
(2.36)
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where ψ is a phase term.

According to the van Cittert-Zernike theorem, the relation between the coherence
function and the spatial frequency power spectrum is a Fourier transform. A more
detailed proof of the van Cittert-Zernike theorem can be found in [37] and [49].

2.6 The Cross-Spectral Density

The cross-correlation of two real random processes x1(t) and x2(t) is defined by the
average product 〈x1(t1)x2(t2)〉 at two different times t1, t2, similar to the definition of
autocorrelation. We can define the cross-correlation of two complex processes as

Γ12(t, t + τ) = 〈z∗1(t)z2(t + τ)〉 (2.37)

If z1(t) and z2(t) are jointly stationary, then Γ12(t, t + τ), like Γ(t, t + τ), is a function
of τ only, and may be written as Γ12(τ). If we then let z1(t),z2(t), . . . ,zN(t) be a set of
N different, jointly stationary random processes, then we can say

Γij(τ) ≡ 〈z∗i (t)zj(t + τ)〉, (i, j = 1,2, . . . , N) (2.38)

is an N × N matrix known as the cross-correlation matrix. We can define the cross-
spectral density (or cross-power spectrum), Wij(ω), of the jointly stationary random
processes zi(t) and zj(t) by the formula

〈z̃∗i (ω)z̃j(ω
′)〉 = Wij(ω)δ(ω−ω′), (2.39)

where z̃i(ω) is the Fourier transform of zi(t). This expression for the cross-spectral
density shows that Fourier components that belong to different frequencies are un-
related. Thus, the cross-spectral density is a measure of the correlations between the
fluctuations of different components at the same frequency. The cross-spectral density
can be rewritten as

Wij(τ) =
1

2π

∫ ∞

−∞
Γij(τ)eiωτdτ. (2.40)

This expression is a Fourier transform of the cross-correlation of zi(t) and zj(t), also
known as the mutual coherence function. This is analogous to the previously defined
function W12(ν) (see Equation 2.14), and thus, with its inverse, is known as a general-
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ized form of the Wiener-Khintchine theorem.

We can extend this theory into the context of optical coherence. The analytic signal
V(r, t), assumed to be stationary and ergodic, can be represented as a Fourier integral

V(r, t) =
∫ ∞

0
Ṽ(r,ν)e−2πiνtdν (2.41)

Using Equation 2.39, we can express the cross-spectral density as

〈Ṽ∗(r1,ν)Ṽ(r2,ν′)〉 = W(r1,r2,ν)δ(ν− ν′), (2.42)

where the ensemble average is taken over the different realisations of the field and δ

is the Dirac delta function. As before, we can also normalise the cross-spectral density
function

µ(r1,r2,ν) =
W(r1,r2,ν)

[W(r1,r1,ν)]1/2[W(r2,r2,ν)]1/2 (2.43)

=
W(r1,r2,ν)

[S(r1,ν)]1/2[S(r2,ν)]1/2 (2.44)

where S(r,ν) ≥ 0 is the non-negative spectral density (power spectrum) of the light.
µ(r1,r2,ν) is referred to as the spectral degree of coherence at frequency ν (or the complex
degree of spatial coherence) [48], [50]. This is not to be confused with the previously
defined complex degree of coherence γ12(τ) (Equation 2.6); γ12(τ) may be said to char-
acterise field correlations in the space-time domain, whereas µ(r1,r2,ν) characterises
them in the space-frequency domain. Thus γ12(τ) and µ(r1,r2,ν) are measures of dif-
ferent characteristics of the field. They are related, however, as shown by Friberg and
Wolf [51]:

γ12(τ) =
∫ ∞

0

√
s1(ω)

√
s2(ω)µ12(ω)exp(−iωτ)dω, (2.45)

where sj(ω), (j = 1,2) are the normalised spectra of the field at the two points.

2.6.1 Cross-Spectral Density and the Schell-Model Beam

The cross-spectral density is a key quantity to describe partially coherent light. The
Schell-model beam was first postulated by Schell in 1967 [52]. He separated the mu-
tual coherence function into the product of functions “s1, s2, and s1 − s2”, i.e.,

Γ(s1, s2,0) = 〈V(s1)V∗(s2)〉 = g(s1)g∗(s2)γ(s1 − s2) (2.46)
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where g(s) is a description of the rms average amplitude across the aperture and
γ(s1 − s2) is the normalised correlation. His area of application was in radio as-
tronomy and the detection of radio signals, but the theory is applicable to quasi-
monochromatic signals that are stationary in time and space.

The concept of Schell-model sources has been widely used to describe the structure
of spatially partially coherent sources and the far zone representation of the respec-
tive optical field [53–57]. In particular, Gaussian Schell-model (GSM) sources charac-
terized by Gaussian distributions of both the optical intensity and the complex degree
of spatial coherence have been extensively analysed [58–62]. This approach is popu-
lar mainly because the mode sources of this type represent many actual sources to a
good approximation and are mathematically convenient to work with.

A source is said to be Schell type if its cross-spectral density has the form

W(r1, r2) =
√

I(r1)I(r2)γ(r1 − r2) (2.47)

If its cross-spectral density and its intensity envelope have a Gaussian profile, the
source is said to be a Gaussian Schell-model (GSM). The quasi-monochromatic GSM
beam is one of a very limited number of partially coherent fields that can be propa-
gated analytically [48]. The fact that they can be propagated analytically make them
very useful in verifying numerical propagation algorithms. The essential point is that
the degree of spectral coherence depends on r1 and r2 only through their difference.
The Schell-model beam will be explored further in Chapters 3 and 4.
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Propagation of Partially

Coherent Optical Fields

The theory of propagation of partially coherent light is well established, basically
taking the form of diffraction integrals that are extensions of those used for coherent
or incoherent light [37], [48], [63]. When it comes to performing these integrations
numerically, a problem arises: the integrals are four-dimensional (4D) rather than
two-dimensional (2D) as for purely coherent or incoherent light. The reason is that for
partially coherent light, the second-order correlation between fields at different points
in space must be taken into account, so integration must be performed not just over
all points of a 2D field distribution but over all pairs of points. Methods of avoiding
these extended calculations have been developed, all with their distinct advantages
and disadvantages. Some of these, such as Hopkins’ Method and coherent-mode
decomposition are discussed in Sections 3.1 and 3.2 respectively. In Section 3.4, the
Elementary Function Method, previously presented by Wald et al [64] and Burvall et
al [65], is summarized and discussed.
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3.1 Hopkins’ Method

In general, Fourier optics can be used to represent imaging systems by means of con-
volution [66]. If we wish to find the image intensity, given the amplitude of the object
and the amplitude point spread function (psf), for an object illuminated by coherent
light, we apply a simple convolution formula:

Ii = |h⊗Ug|2 (3.1)

where h represents the amplitude point spread function and Ug is the object ampli-
tude. A coherent imaging system is linear in complex amplitude (assumed to be the
same everywhere in the field, i.e. isoplanatic), as shown in the amplitude convolution
equation above. A non-coherent, or incoherent, imaging system is linear in intensity.
For this case, the corresponding convolution equation involves the intensity impulse
response and the ideal image intensity:

Ii = |h|2 ⊗ |Ug|2 (3.2)

However, if the object illumination is partially spatially coherent then, in general, no
convolution formula, and therefore no linear transfer function exists.

Consider an optical system (see Figure 3.1) in which an “incoherent” source (the
condenser exit pupil) illuminates an object which is imaged using the objective lens.
The condenser exit pupil may not act as an incoherent source if the original primary
source is extremely small, but under practical conditions it is a sufficiently good ap-
proximation. Given this optical system, our aim is to find the image intensity in terms
of the amplitude transmittance of the object and other functions. Our basic method
is to propagate the two coordinates of the mutual intensity through the system and
then find the image intensity by letting the two coordinates of the mutual intensity in
the image plane be equal; this basic method is used in solving virtually all spatially
partially coherent imaging problems. We assume the light is quasi-monochromatic.

Let S( f , g) be the source intensity distribution in the exit pupil of the condenser;
the coordinates ( f , g) are related to the real distance coordinates (ξ,ζ) in the exit pupil
by

f =
ξ

λ fc
, g =

ζ

λ fc
(3.3)
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Figure 3.1: Optical system in a microscope.

where fc is the focal length of the condenser. Using the van Cittert-Zernike theorem,
the mutual intensity just before the object is therefore given by the Fourier transform
of S( f , g):

J−0 (x0 − x′0,y0 − y′0) =
∫∫ ∞

−∞
S( f , g)exp[+2πi f (x0 − x′0) + g(y0 − y′0)]d f dg (3.4)

The mutual intensity just after the object is

J0(x0,y0, x′0,y′0) = J−0 (x0 − x′0,y0 − y′0)F(x0,y0)F∗(x′0,y′0) (3.5)

where F(x0,y0) is the complex amplitude transmittance (TCC) of the object. Assum-
ing an isoplanatic optical system, the mutual intensity in the image plane is

JI(x1,y1, x′1,y′1) =
∫∫∫∫ ∞

−∞
J−0 (x0 − x′0,y0 − y′0)

×F(x0,y0)F∗(x′0,y′0)

×K(x1 − x0,y1 − y0)K∗(x′1 − x′0,y′1 − y′0)dx0dy0dx′0dy′0 (3.6)

where K(x,y) is the amplitude point spread function of the objective lens. The image
intensity is found from Equation 3.6 by letting x1 = x′1 and y1 = y′1. We avoid this
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lengthy expression and rewrite the functions in terms of their Fourier transforms:

F̃( f , g) =
∫∫ ∞

−∞
F(x,y)exp[+2πi( f x + gy)]dxdy (3.7)

and
K̃( f , g) =

∫∫ ∞

−∞
K(x,y)exp[+2πi( f x + gy)]dxdy, (3.8)

where F̃( f , g) is the Fourier transform of the complex amplitude transmittance, F(x,y).
The function K̃( f , g) is the coherent transfer function and is equal to the pupil trans-
mission function of the objective lens if distances in the pupil (ξ ′,ζ ′) are related to
( f , g) by

f =
ξ ′

λ fo
, g =

ζ ′

λ fo
, (3.9)

where fo is the focal length of the objective. Using Equations 3.7 and 3.8 and rear-
ranging, the expression for the image intensity becomes

I(x1,y1) =
∫∫∫∫ ∞

−∞
T( f ′, g′, f ′′, g′′)F̃( f ′, g′)F̃∗( f ′′, g′′)

= ×exp[−2πi{( f ′ − f ′′)x1 + (g′ − g′′)y1}]d f ′dg′d f ′′dg′′ (3.10)

where T( f ′, g′, f ′′, g′′) is called the transmission cross coefficient and is defined by

T( f ′, g′, f ′′, g′′) ==
∫∫ ∞

−∞
S( f , g)K̃( f + f ′, g + g′)K̃∗( f + f ′′, g + g′′)d f dg (3.11)

Finally, the Fourier transform of the image intensity is given by the relatively simple
expression

Ĩ( f , g) =
∫∫ ∞

−∞
F( f ′ + f , g′ + g, f ′, g′)F̃( f ′ + f , g′ + g)F̃∗( f ′, g′)d f ′dg′ (3.12)

Hopkins was the original pioneer for the use of transfer function methods for the
assessment of the quality of optical imaging systems [67], [68]. The previous work-
through is a generalised method, and Hopkins’ method follows, making the right
substitutions. Hopkins introduced a “phase coherence factor” [67] which details the
correlation of phase between wave disturbances at any two points.

The phase-coherence factor in the object plane may be built up step by step: from
the source to the entrance pupil of the first condenser, to the exit pupil and so on. For
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two points P1, P2 of an illuminated surface the phase-coherence factor is defined as

γ12 =
1√
I1 I2

∫
Σ

U1U∗2 dσ (3.13)

where I1, I2 are the intensities at P1, P2 produced by the source Σ, and U1,U2 are the
complex amplitudes at these points associated with an element dσ of the source. The
factor γ12 is in general complex; its modulus defines the the coherence of the vibra-
tions and its argument denotes their difference in phase. It is analogous to the com-
plex degree of coherence defined in Chapter 2 (see Equation 2.6). Hopkins postu-
lated an ‘effective source’, found by calculating the Fourier transform of the phase-
coherence factor,

Γ(x,y) =
1

2π

∫∫ +∞

−∞
γ(u,v)e−i(ux+vy)dudv (3.14)

which can replace the illuminating system, provided Γ(x,y) is real. This quantity is
analogous to the mutual coherence function defined in Chapter 2. To specify the con-
ditions of illumination of any surface, both the phase-coherence between all pairs of
points on the surface and the intensity of the illumination at all points of the surface
must be specified. We also assume the original illumination is uniform in intensity;
even if this is not the case, the non-uniformity can be incorporated into the effective
source as a non-uniform transparency. The complex transmission of the optical sys-
tem is given as

F(u′ − u1,v′ − v1) =
1

2π

∫∫ +∞

−∞
f (x,y)ei{(u′−u1)x+(v′−v1)y}dxdy (3.15)

where f (x,y) is the Fourier transform of F(u,v).

Let a complex function E(u,v) represent the complex transmission of the object. If an
element dσ of the source produces a complex amplitude U1 at (u1,v1), the amplitude
in the image plane due to light from dσ is given by

∫∫ +∞

−∞
U1E(u1,v1)F(u′ − u1,v′ − v1)du1dv1 (3.16)

An equivalent expression can be obtained using an independent current point (u2,v2).
The partial intensity in the image which is associated with light from dσ is then given
by
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dI′(u′,v′) = dσ
∫∫∫∫ +∞

−∞
U1E(u1,v1)F(u′ − u1,v′ − v1)U∗2 E∗(u2,v2)

×F∗(u′ − u2,v′ − v2)du1du2dv1dv2 (3.17)

Integrating over the whole source, the total intensity in the image plane is given as

I′(u′,v′) =
∫∫∫∫ +∞

−∞
Γ(u1 − u2,v1 − v2)E(u1,v1)

×F(u′ − u1,v′ − v1)E∗(u2,v2)

×F∗(u′ − u2,v′ − v2)du1du2dv1dv2 (3.18)

where Γ(u1,u2,v1,v2) is the mutual coherence function, F(u′,u1,u2,v′,v1,v2) is the ob-
ject amplitude and E(u1,u2,v1,v2) represents the system response. The intensity in
the image plane is computed for a single point (x,y) of an ‘effective source’. Integra-
tion over the area (A) of the effective source gives the intensity distribution due to the
whole source.

This approach reduces the complexity of the calculations involved in modelling
systems where the illuminating source is partially spatially coherent. However, Hop-
kins’ Method applies only in certain situations: systems containing a perfectly inco-
herent primary source.

3.2 Coherent-Mode Decomposition

When dealing with the modelling and propagation of partially coherent light fields,
the coherent-mode decomposition approach is well established. Although the mutual
coherence function (and the associated cross-spectral density) is sufficient for analy-
sis of interference and diffraction effects of light at various degrees of coherence, the
calculations quickly become complicated and expensive. The coherent mode method
was introduced as an alternative to direct propagation of the cross-spectral density,
reducing the complexity of the calculations as only two-dimensional integrals are re-
quired. The method was first proposed by Gori [69], followed by some key publica-
tions by Wolf [70], [47] and Starikov and Wolf [58]. The basic feature of the theory is
a rigorous decomposition of the cross-spectral density function of the source into co-
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herent modes. The modes are propagated and added coherently in the image plane.
The expansion uses a basis of orthogonal functions which are eigenfunctions of the
mutual coherence function Γ(r1,r2). We will proceed with the approach of Wolf, in-
cluding notation from [48].

Consider a stationary optical field V(r, t) in some finite closed domain D in free
space and let Γ(r1, r2,τ) be its mutual coherence function. We assume Γ(r1, r2,τ) falls
off sufficiently rapidly with τ as |τ| → ∞ to ensure that, for all points r1 ∈ D and
r2 ∈ D, the mutual coherence function is absolutely integrable with respect to τ, i.e.
that

∫ ∞

−∞
|Γ(r1, r2,τ)|dτ < ∞ (3.19)

The Fourier transform of Γ(r1, r2,τ) is

W(r1, r2,ν) =
1

2π

∫ ∞

−∞
Γ(r1, r2,τ)eiντdτ (3.20)

W(r1, r2,ν) is the cross-spectral density of the source distribution, and its “diagonal”
element

S(r,ν) ≡W(r, r,ν) (3.21)

is the spectral density (the spectrum) of the source distribution at r. It is a property
of cross-correlation functions that their absolute integrability implies also square in-
tegrability, i.e., ∫ ∞

−∞
|Γ(r1, r2,τ)|2dτ < ∞ (3.22)

According to Mercer’s theorem, any continuous, hermitian, nonnegative definite Hilbert-
Schmidt kernel that is not identically zero, and hence our cross-spectral density func-
tion W(r1, r2,ν), may be expressed in the form

W(r1, r2,ν) = ∑
n

λn(ν)ψ
∗
n(r1,ν)ψn(r2,ν). (3.23)

The functions ψn(r,ν) are the eigenfunctions, and the coefficients λn(ν) are the eigen-
values of the integral equation∫

D
W(r1, r2,ν)ψn(r1,ν)d3r1 = λn(ν)ψn(r2,ν) (3.24)
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which is seen to be a homogeneous Fredholm integral equation of the second kind.

We can choose that the eigenfunctions form an orthonormal set, i.e. that

∫
D

ψ∗n(r,ν)ψm(r,ν)d3r = δnm (3.25)

where δnm is the Kronecker symbol.

Rewriting the Mercer expansion (Equation 3.23):

W(r1, r2,ν) = ∑
n

λn(ν)W(n)(r1, r2,ν) (3.26)

where
W(n)(r1, r2,ν) = ψ∗n(r1,ν)ψn(r2,ν) (3.27)

An expression of this form represents the cross-spectral density of a completely co-
herent field. The expansion in Equation 3.26 represents the cross-spectral density of
the field as a superposition of elementary modes, each of which is spatially com-
pletely coherent at each frequency. For this reason, the expansion 3.23 is sometimes
referred to as the coherent-mode representation of the cross-spectral density. Starikov
and Wolf [58] applied this theory to determine the mode structure of a Gaussian
Schell-model source. The number of modes required to represent the source depends
on β, the ratio of the coherence length of the source to the size of the source. In the
spatially coherent case, β >> 1, and the source can be fully represented by a single
mode. When β << 1, the source is essentially spatially incoherent, and the number of
modes to be propagated is of the order of 1/β, and the coherent mode approach be-
comes unsuitable. Thus, for a relatively coherent source, the coherent mode approach
is useful.

Vahimaa and Turunen [71] extended the coherent mode theory based on a new
type of coherent mode expansion involving an incoherent superposition of a set of
identical, but spatially displaced coherent elementary fields. Their approach is essen-
tially an extension of the decomposition presented by Gori and Palma [72] but for a
special class of quasihomogenous Gaussian fields of low coherence. As with Wolf’s
approach, the modes are identical, and so a two-dimensional integral is sufficient to
propagate the functions. They observe that the cross-spectral density function of any
field with a Schell-model angular correlation function can be represented in the form
of a continuous, incoherent linear superposition of fully coherent elementary fields,
each with the same wave form f (ρ,z0) and cross-spectral density function
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We(ρ1,ρ2,z0) = f ∗(ρ1) f (ρ2). (3.28)

The elementary fields originate from different lateral locations, and are weighted ac-
cording to their position across the source. In [71], Vahimaa and Turunen state: ‘The
free-space propagation of every partially coherent field with a Schell-model angular correlation
function can be governed by propagating a single coherent field and then linearly combining
the contributions from the entire source area’.

The coherent-mode decomposition method has obvious advantages over expen-
sive 4D integral calculations. When the degree of coherence is high, the number of
coherent modes is small, and the calculations are relatively fast. The main disadvan-
tage is that the modes are particular to a specific field, so if the intensity or coherence
distribution changes, the modes must be recalculated.

3.3 The Wigner Distribution Function

The Wigner distribution function is another useful tool in yielding a simpler descrip-
tion of partially coherent light and was first presented by Wigner in 1932 [73] in the
description of a mechanical phenomena in phase space. In general, the Wigner func-
tion describes a signal in space and spatial frequency simultaneously, and can be con-
sidered as the local frequency spectrum of the signal (as opposed to a global energy
distribution). The function was extended into optics by Walther in 1968 [74] as the
generalized radiance, to relate partial coherence with radiometry. The distribution is
now well established in the area of Fourier optics, with key contributions from Basti-
aans.

Bastiaans [75] showed that the Wigner distribution function concept yields a link
between geometrical optics and wave optics, and can also be applied to stochastic
signals. The notion of a local frequency spectrum is analogous to geometrical op-
tics, where the signal is described by giving the directions of the rays that should be
present at a certain position. In the literature, the Wigner distribution function f (x,u)
of a signal ψ(x) is defined by

F(x,u) =
∫

ψ(x +
1
2

x′)ψ∗(x− 1
2

x′)exp[−iux′]dx′ (3.29)

where ψ∗(x) denotes the complex conjugate. There exists an equivalent definition in
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the frequency domain

F(x,u) =
1

2π

∫
ψ̂(u +

1
2

u′)ψ̂∗(u− 1
2

u′)exp[iu′x]du′ (3.30)

The function F(x,u) represents the signal in space and frequency simultaneously, and
can thus be considered an intermediate signal representation between the pure space
description ψ(x) and the pure frequency description ψ̂(u).

The Wigner distribution function can be used to describe partially coherent light
and to propagate it through imaging systems. In Section 2.1, we introduced the mu-
tual coherence function Γ(x1,x2,τ) (see Equation 2.5) as a statistical ensemble of the
correlations in the light source. The Fourier transform of this quantity is the cross-
spectral density (Equation 2.40). We can rewrite it here in terms of x1 and x2.

W(x1, x2,ω) =
∫

Γ(x1, x2,τ)eiωτdτ (3.31)

The cross-spectral density can also be referred to as the mutual power spectrum. The
basic property of this power spectrum is that it is a nonnegative definite Hermitian
function of x1 and x2. This means that

W(−(x1, x2,ω)) = W∗(x1, x2,ω) (3.32)

and

∫ ∫
g(x1,ω)W(x1, x2,ω)g∗(x2,ω)dx1dx2 ≥ 0 (3.33)

Equation 3.31 expresses the coherence of the light at two different positions, and its
Fourier transform Ŵ(u1,u2,ω) expresses the coherence in two different directions.

Ŵ(u1,u2,ω) =
∫ ∫

W(x1, x2,ω)e−i(u1x1−u2x2)dx1dx2. (3.34)

If we refer to W(x1, x2,ω) as the positional power spectrum, then Ŵ(u1,u2,ω) can be
called the directional power spectrum [76], [77]. The Wigner distribution function of-
fers an alternative to the cross-spectral density by describing a stochastic process in
space and spatial frequency simultaneously. For a Gaussian Schell-model beam, the
positional power spectrum can be written as
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W(x1, x2) =

√
2σ

ρ
exp

[
−
(

π

2ρ2

)(
σ(x1 + x2)

2 +
1
σ
(x1 − x2)

2
)]

(0 < σ ≤ 1); (3.35)

where σ represents the degree of coherence of the Schell-model source. The corre-
sponding Wigner distribution function is

F(x,u) = 2σexp
[
−σ

(
2π

ρ2 x2 +
ρ2

2π
u2
)]

(0 < σ ≤ 1), (3.36)

which is Gaussian in both x and in u. In Fourier optics, the response of an imaging
system can be described by its point spread function (or psf ). Using the system psf,
we can derive the double Wigner distribution function of the system, which gives us
a relationship between input and output in terms of Wigner distribution functions.
Bastiaans [75] determined the zeroth -, first -, and second - order moments of the
Wigner distribution function and derived the propagation of these moments through
a first-order system.

3.4 The Elementary Function Method

The Elementary Function Method is a modal method based on work recently devel-
oped by Wald et al [64], where a transform is introduced that will give us an exact
expression for the cross-spectral density. This method is similar to the coherent-mode
method but easier to handle numerically. Using what amounts to approximate modes
(which we refer to as elementary functions using the terminology of Gabor) that are
easily found analytically or numerically, propagation can be reduced to a series of
2D integrals. Unlike the coherent-mode expansion, the elementary function method
is not mathematically exact: certain approximations limit its application to relatively
well-behaved fields such as short-wavelength partially coherent excimer sources. An
elementary function expansion has also previously been applied in both the space-
time and space-frequency domains [71], [78], [79], [80]. This section is based on our
publication [65].

We begin by examining the continuous case. We assume once again that we are
dealing with a partially coherent field, described by the cross-spectral density W(r1,r2).
The intensity is I0 = W(r,r). All quantities are implicitly assumed to depend on the
frequency ν of the light, e.g., W(r1,r2,ν), but the notation is dropped for the rest of this
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discussion. It is assumed that we know W0(r1, r2) over a plane, two-dimensional re-
gion where rj = (xj,yj), and we wish to propagate it to any other region. We also need
to make an important assumption: that the cross-spectral density is real in the plane
where we start the propagation. This is a limitation, but it can be said of most beams
if the first plane is chosen cleverly and e.g. the phase functions of lenses included in
the propagation instead. The propagation is performed using

W(r1, r2) =
∫ ∫

∞
d2r′1

∫ ∫
∞

d2r′2h∗(r1, r′1)h(r2, r′2)W0(r′1, r′2) , (3.37)

where h(r, r′) is an impulse response function and is system-specific. Introducing the
transform, we assume the initial cross-spectral density may be written as

W0(r1, r2) =
∫ ∫

∞
d2r′ a(r′) f (r1 − r′) f (r2 − r′) (3.38)

where the elementary function f (r) is real and even. This expression differs from that
defined by Wald et al [64] in that we use a general coefficient a(r′), while they force
positivity by using a2(r′). The expression describes a transform, and provided that
the functions a(r′) and f (r) exist, it is exact. Wald et al [64] introduce a method for
finding a(r′) and f (r), thus proving that the transform in Equation 3.38 exists.

Taking the Fourier transform of the cross-spectral density, we get

Ŵ0(r1, r2) =
∫ ∫

∞
d2r1

∫ ∫
∞

d2r2

∫ ∫
∞

d2r′ a(r′) f (r1 − r′) f (r2 − r′)

×exp(−2πiu1 · r1)exp(−2πiu2 · r2) (3.39)

where the spatial frequencies are uj = (uj,vj). Changing the order of integration and
applying the shift theorem twice yields

Ŵ0(r1, r2) = f̂ (u1) f̂ (u2)
∫ ∫

∞
d2r′a(r′)exp(−2πi(u1 + u2) · r′), (3.40)

where f̂ (u) is the two-dimensional Fourier transform of f (r). Since we have assumed
that f (r) is real and even, so is its Fourier transform f̂ (u), i.e., f̂ (u) = f̂ (−u). We can
thus evaluate

Ŵ0(u,−u) = C[ f̂ (u)]2 (3.41)

provided the integral

C =
∫ ∫

∞
d2r′ a(r′) (3.42)
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exists. We now know that
f̂ (u) ∝

√
Ŵ0(u,−u) (3.43)

and the shape of the function f (r) can be found from the inverse Fourier transform.
It can then be normalized.

The coefficient function a(r′) must also be found. As mentioned earlier, the intensity
may be written as

I0(r) = W0(r, r) =
∫

∞
d2r′a(r′) f 2(r− r′). (3.44)

Taking the Fourier transform, changing the order of integration and applying the shift
theorem gives

Î0(u) = â(u) f̂ 2(u), (3.45)

where Î0(u) is the Fourier transform of a(r), â(u) is the Fourier transform of a(r), and
f̂ 2(u) is the Fourier transform of f 2(r), the square of f (r). Rearranging, we get

â(u) =
Î0(u)

f̂ 2(u)
, (3.46)

and knowing that a(r′) and f (r) exist, we can proclaim the transform in( 3.38) as valid.
Propagation is performed by inserting Equation 3.38 into Equation 3.37. In practice,
instead of the exact transform in Equation 3.38, we use the corresponding discrete
sum

W0(r1, r2) = ∑
n

∑
m

amn f (r1 − rmn) f (r2 − rmn). (3.47)

Here rmn = (xm,yn) are sampled on a grid as xm = m∆x and yn = n∆y. The values
of ∆x and ∆y are found by establishing a sampling criterion based on the partition
of unity condition [81]. We take the Fourier transform of the cross-spectral density to
give

Ŵ0(u1,u2) =
∫ ∫

∞
d2r1

∫ ∫
∞

d2r2 ∑
m

∑
n

amn f (r1 − rmn)

× f (r2 − rmn)exp(−2πiu1 · r1)exp(−2πiu2 · r2). (3.48)

Interchanging the order of integrations and sum, and performing the Fourier trans-
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forms using the shift theorem, yields

Ŵ0(u1,u2) = f̂ (u1) f̂ (u2)∑
m

∑
n

amnexp(−2πi(u1 + u2) · rmn). (3.49)

We once again assume f (r) is real and even, so we can say

Ŵ0(u,−u) = f̂ 2(u)∑
m

∑
n

amn (3.50)

and, provided that the sum exists, this leads us to

f̂ (u) ∝
√

Ŵ0(u,−u) (3.51)

3.4.1 Analytical Examples

In the case of a fully coherent Schell-model source, the cross-spectral density may be
written as

W0(x1, x2) =
√

I0(x1)
√

I0(x2) (3.52)

where I0(x) is the intensity. It is separable in x1 and x2, so its Fourier transform may
be written as the product

Ŵ0(u1,u2) = F
{√

I0(x1)

}
[u1] · F

{√
I0(x2)

}
[u2] (3.53)

where F represents the Fourier transform. Evaluating W(u,−u) quickly yields

f̂ (u) ∝ F
{√

I0(x)
}
[u] (3.54)

and consequently

f (x) ∝
√

I0(x) . (3.55)

This confirms what was obvious already from Equation 3.52: the cross-spectral den-
sity is separable, with f (x) =

√
I0(x), a0 = 1, and am = 0 for m 6= 0. Only one mode/function

is required.
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In the case of incoherent light, the cross-spectral density is

W0(x1, x2) =
√

I0(x1)
√

I0(x2)δ(x1 − x2) , (3.56)

and its Fourier transform
Ŵ0(u1,u2) = Î0(u1 + u2) . (3.57)

So W(u,−u) = Î0(0) is a constant, and f̂ (u) must be a constant too. Then f (x) ∝ δ(x),
and since a delta function is used for interpolation the sampling interval ∆x must be
infinitely small and the continuous theory must be used. This gives no advantage in
computation speed. Besides, for incoherent light the normal method of propagation
reduces to solving 2D integrals, so the modal method is not needed from numerical
point of view.

In the case of a Gaussian Schell-model beam (a partially coherent source), the elemen-
tary function is given by

W0(x1, x2) = Aexp
(

x2
1

σ2
I

)
exp

(
x2

2

σ2
I

)
exp

[
(x1 − x2)2

σ2
g

]
(3.58)

where σI represents the width of the intensity distribution and σg the width of the
coherence distribution. Following a series of calculations, we arrive at an expression
for the elementary function

f (x) =
1

(σIσg)1/2

(
σ2

I + σ2
g

π

)1/4

exp

[
−1

2
x2

(
1
σ2

I
+

4
σ2

g

)]
(3.59)

We can see that it is a Gaussian, and that its width depends on both σI and σg. For
example, if σg � σI the light is nearly coherent, and the elementary function will be
proportional to the field distribution

√
I0(x). This implies only one such function

is required to represent the field. On the other hand, if σg � σI the light is nearly
incoherent, and the elementary function will become very narrow and resemble a
delta function. Very small ∆x is then required.

Continuing the analysis to find the coefficients am, we get

am = ∆xAσI
√

π
∫ 1/2∆x

−1/2∆x
duexp

(
−π2u2 4σ4

I

4σ2
I + σ2

g

)
exp (2πim∆xu) . (3.60)
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and the sampling distance ∆x is given by

∆x =
πσIσg√

(− ln c)(σ2
g + 4σ2

I )
. (3.61)

where the value of c depends on our definition of the full width of the Gaussian
distribution. This will be discussed further in Chapter 5.
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Figure 3.2: (a)-(c) Intensity and reconstructed intensity (thick line; they are almost
identical in all three cases) are shown for 1-D Gaussian Schell-model beams of differ-
ent degrees of coherence, along with the scaled and shifted squares of the elementary
functions (thin lines). Adding those together gives the reconstructed intensity. The
intensity distribution is the same for all beams, with σI = 0.01 m, while the coherence
varies from high to low as (a) σg = 0.03 m with 7 elementary functions required, (b)
σg = 0.01 m with 13 elementary functions required, and (c) σg = 0.003 m with 39 el-
ementary functions required. (d)-(f) Reconstruction of the cross-spectral density for
the parameters in (a), (b), and (c) respectively.
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Figure 3.2 illustrates the position and weighting of the elementary functions and the
reconstructed intensity.

3.4.2 Numerical Analysis

To evaluate this transform numerically, we construct the cross-spectral density of the
Schell-model beam using measurable quantities: the intensity profile of the beam I0,
and the coherence distribution γ.

W0(r1, r2) =
√

I0(r1)
√

I0(r2)γ(r1 − r2). (3.62)

Both I0(r) and γ(r) are 2D quantities, and so finding the Fourier transform of W0(r1, r2)

involves a 4D integral. To avoid this calculation, we go directly to the 2D quantity
Ŵ0(u,−u) by

Ŵ0(u,−u) =
∫∫

∞
d2u′Û2(u− u′)γ̂(u′) (3.63)

where Û(u) and γ̂(u) are the Fourier transforms of U(r) and γ(r) respectively. The
detail of this calculation can be found in Reference [65].

From the various methods discussed in this chapter, we proceed with just one:
the Elementary Function Method. To apply this model to a real system, we require
real beam data. In the following chapter, methods to measure the spatial coherence
of the source are discussed, and the laboratory design and results are presented. In
Chapters 5 and 6, the Elementary Function Method is applied to an ideal Gaussian
Schell-model beam, and to a real excimer laser beam.
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Chapter 4

Measuring Spatial Coherence

Excimer lasers are operated in pulsed mode with a broad linewidth, meaning that
both the temporal and spatial coherence are low. The linewidth of a laser is the
full width at half-maximum (FWHM) of its optical spectrum. More precisely, it is
the FWHM of the power spectral density of the emitted electric field in terms of fre-
quency, wavenumber or wavelength. Excimer lasers are quite often line-narrowed for
use in lithographic systems which can increase the spatial coherence of the laser quite
dramatically. Many lithographic systems also use homogenizing optics to smooth
the intensity profile of the beam which can have an effect on the spatial coherence
length of the source (see Chapter 5). In order to develop an accurate model of a litho-
graphic imaging system, precise information about the degree of spatial coherence
of the source (and the effects of beam homogenization on that coherence) is needed.
In this chapter, some established methods to measure the spatial coherence of a laser
source are explored, including methods involving interferometry (Section 4.1) and the
use of coded arrays (Section 4.2). Experimental results for the measurement of spatial
coherence are presented and analysed in Section 4.3.

4.1 Interferometric Methods

The concept of optical coherence has long been associated with interference, pre-
sumably because interference is the simplest phenomenon that reveals correlation
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between light beams. Many methods to measure spatial coherence of a light source
are based on the Young’s double slit interferometer as discussed in an earlier sec-
tion (see Figure 2.3). In 1938, Zernike determined the degree of coherence directly
from the visibility of the interference fringes formed in a Young interferometer. Visi-
bility, which is a measure of contrast of interference fringes, is a concept introduced
by Michelson (1890). The visibility V(r) at a point P(r) in an interference pattern is
defined as

V(r) =
〈I〉max − 〈I〉min

〈I〉max + 〈I〉min
, (4.1)

where 〈I〉max and 〈I〉min are the maximum and minimum values that the averaged
intensity assumes in the immediate neighbourhood of P. Methods based on the mea-
surement of fringe visibility have involved masks containing two apertures, but this
has the disadvantage that the mask must be moved laterally to sample all parts of
the beam. Also, if the phase and modulus of the complex degree of spatial coherence
are shift variant, a single interferogram is not sufficient to fully characterise the light
field. Methods using coded arrays have an advantage over two aperture systems: the
data gathered from a single exposure of an array of many pinholes can be equivalent
to several exposures of a double aperture system.

4.2 Methods using Coded Arrays

Nugent and Trebes [82] and Castañeda [56], [57] proposed an alternative to the dou-
ble pinhole measurement: using a mask with multiple apertures spaced evenly and
analysing the Fourier spectrum. This type of mask became known as a coded array. A
coded array is defined to be a pattern on a periodic two-dimensional lattice which as-
sociates with each lattice point a 0 or a 1 indicating whether the lattice point is "open"
or "closed". In coded aperture imaging, the open and closed lattice points become
open and closed cells in an opaque mask. The spacing between apertures in the array
determines the class of coded array: if the spacing between each pair of apertures is
unique, the array is called non-redundant; if the spacing between each set of apertures
is equal, then the array is called uniformly redundant.

Coded arrays were originally conceived for applications in X-ray imaging by Mertz
& Young 1961 and by Dicke in 1968 [83]. X-ray sources are usually so weak that a sin-
gle pinhole camera would have to have a very large opening in order to obtain a
reasonable signal to noise ratio (SNR), which reduces the resolution of the system. If,

45



Chapter 4. Measuring Spatial Coherence

instead, N pinholes are used to image the object, the image produced consists of N
overlapping images of the object. The coded aperture technique (for a point source)
can improve the SNR by roughly

√
N when compared to the single pinhole cam-

era [83].

4.2.1 Uniformly Redundant Arrays

A uniformly redundant array (URA) is a particular form of coded array [84]. For
a URA, each possible vector displacement between pairs of equivalent open lattice
points occurs a uniform or precisely equal number of times. The power spectrum of
the array is flat up to some limit determined by the minimum aperture separation
and so has a perfectly sharp autocorrelation function with perfectly flat sidelobes,
provided the autocorrelation function is calculated on a discrete grid with separations
equal to the minimum aperture separation [82]. The spacing between each aperture
pair is not unique and corresponds to a single frequency in the Fourier analysis of
the resultant interference pattern. As a result, URAs are not suited to making spatial
coherence measurements.

4.2.2 Non-Redundant Arrays

A non-redundant array (NRA) is an array of points on a regular lattice such that the
vector difference between any two points in the array is unique. This type of coded ar-
ray is most suitable for spatial coherence measurements: all classes of aperture pairs
of the mask are composed by only one pair and so contribute only once to the re-
sulting interference pattern. Each frequency is represented only once. There are some
considerations in the design of the array. If the radius of the apertures is much smaller
than the dimensions of the coherence area, then the variations of the light field within
each aperture are not significant to make an accurate measurement [85].

Mejía and Gonzáles [85] have shown experimental results of a method involving
an NRA. Their experimental set-up includes an array with five apertures. Each spac-
ing is unique and an integer multiple of the smallest spacing. The mask is illuminated
by a coherent laser source (633 nm) decohered using a piece of rotating ground glass.
When the array of pinholes is illuminated by the source, a pattern is produced which
is the result of the interference of each aperture pair adding together.

Fourier analysis of the far-field interferogram follows. The degree of spatial co-
herence can be deduced from the visibility of the interference fringes multiplied by a
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factor dependent on the intensity at each aperture as shown by Wolf [86].

4.2.3 Experimental Design

In our design, we considered the advantages of the pinhole array over a two-pinhole
arrangement. When using a mask with multiple apertures, one measurement is suf-
ficient to deduce the spatial coherence of the source. The sizes of the pinholes were
chosen to allow the mask to be used with sources of 193nm and 248nm wavelengths.
The design of the pinhole plate is shown in Figure 4.1. The layout of the pinholes
is suitable for measurements of spatial coherence in both the horizontal and vertical
direction, or the long and short axes of the beam. The diameter of the pinholes differs
in the arrays: the pinholes in array ‘A’ are 5 µm in diameter, the pinholes in the arrays
labelled ‘B’ are 10 µm in diameter, and in arrays labelled ‘C’ the pinhole diameter is
15 µm. Figure 4.2 is an expanded diagram of the layout of the pinholes in each array.
The spacings chosen form an array with one degree of redundancy, i.e. one aperture
pair spacing occurs more than once (see Table 4.1). The chosen design will allow co-
herence measurements at several spacings within the expected coherence length of
the sources, but the trade-off is one separation occurring twice. This can be avoided
by increasing the pinhole separations, but this results in fewer pinhole pairs within
the coherence length of the source. To optimise the measurements, his compromise
was accepted, and the data corresponding to the redundant spacing was ignored dur-
ing data analysis. Golay presents a discussion on the optimization of nonredundant
arrays in [87].

In Table 4.1, it is shown that the interference between pinholes 2 and 4 and pin-
holes 4 and 5 arises from a separation of 0.40mm. This will affect the distribution of
intensity among the interference fringes. The number of pinholes (five) will give nine
classes of aperture pair . Under spatially partially coherent illumination, the effective
contributing classes will be chosen by the modulus of the complex degree of spatial
coherence, in such a way that its magnitude specifies the weight of the contribution
and its support the number of contributing classes. From this, the modulus and com-
plex degree of coherence can be determined.

The expected results can be derived using the elementary equations for the theory
of partial coherence found in Born & Wolf [37]. Born & Wolf show that when two
quasi-monochromatic light beams interfere, the intensity at point Q in the interference
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Figure 4.1: The finished design of mask with arrays of five pinholes. The pinhole
diameters are A = 5 µm, B = 10 µm, and C = 15 µm.

Figure 4.2: Layout of five-pinhole array. Spacings: 1− 2 = 0.16 mm, 2− 3 = 0.08 mm,
3− 4 = 0.32 mm, and 4− 5 = 0.40 mm.
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Pair Class Separation (mm)
2,3 1 0.08
1,2 2 0.16
1,3 3 0.24
3,4 4 0.32
2,4 5 0.40
4,5 5 0.40
1,4 7 0.56
3,5 9 0.72
2,5 10 0.80
1,5 12 0.96

Table 4.1: Classes of aperture pairs yielded by the mask of Figure 4.2.

pattern is given by

I(2)(Q) = I(1)(Q) + I(2)(Q) + 2
√

I(1)(Q)
√

I(2)(Q)|j12|cos[β12 − δ]. (4.2)

This equation is valid as long as the path difference |s2 − s1| = c|τ|, introduced be-
tween the interfering beams, is small compared to the coherence length, i.e.

|∆S| = |s2 − s1| =
λ̄

2π
δ <<

λ̄2

∆λ
, (4.3)

where c/∆ν = λ2/∆λ. Within this range of validity, the correlation between the vi-
brations at any two points P1 and P2 in the wave field is characterized by the mutual
intensity, J12, rather than by Γ12(τ), i.e. by a quantity which depends on the positions
of the two points, but not on the time difference τ. It follows that

|γ12(τ)| ≈ |j12|, (4.4)

so that |j12| represents the degree of coherence of the vibrations at P1 and P2 (and
0≤ |j12| ≤ 1). The phase β12 of |j12| represents their effective phase difference. j12, just
like γ12(τ) of which it is a special case, is usually called the complex degree of coherence
and J12 is called the mutual intensity.

Equation 4.2 can be extended for interference of multiple sources, as in the case of a
pinhole array. In the case of three pinholes, the intensity at point Q in the interference
pattern is given by
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I(3)(Q) = I(1)(Q) + I(2)(Q) + I(3)(Q)

+ 2
√

I(1)(Q)
√

I(2)(Q)|j12|cos[β12 − δ]

+ 2
√

I(2)(Q)
√

I(3)(Q)|j23|cos[β23 − δ]

+ 2
√

I(1)(Q)
√

I(3)(Q)|j13|cos[β13 − δ] (4.5)

If we assume uniform intensity across the original laser source, then the intensity of
the light leaving each pinhole is equal. We substitute I′(Q) for the intensity from each
pinhole i.e.

I(1)(Q) = I(2)(Q) = I(3)(Q) = I′(Q) (4.6)

Substituting I′(Q) into the previous equation gives

I(3)(Q) = 3I′(Q) + 2I′(Q)|j12|cos[β12 − δ]

+ 2I′(Q)|j23|cos[β23 − δ]

+ 2I′(Q)|j13|cos[β13 − δ] (4.7)

Performing a Fourier transform of the intensity expression gives

Ĩ(3)(u) = 3I′(Q)

[
δ(u) +

|j12|
3

(δ(u− u1) + δ(u + u1))

+
|j23|

3
(δ(u− u2) + δ(u + u2))

+
|j13|

3
(δ(u− u3) + δ(u + u3))

]
(4.8)

This shows that a Fourier transform of the intensity in the image plane of the interfer-
ence pattern will produce a delta function with magnitude proportional to the sum
of the intensities of the interfering beams. On either side of this delta function, there
are delta functions of a lower magnitude, corresponding to a different frequency or
interaction between a pair of apertures. For an interference problem with three aper-
tures, there are three resulting delta functions located on either side of the central
maximum. The spacing of the functions is related to the distance between interfering
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Figure 4.3: (a) Simulated intensity cross-section of the interference pattern produced
by five pinholes illuminated with spatially coherent light, (b) The normalised Fourier
magnitude spectrum of (a). Each delta function has a magnitude equal to one fifth of
the normalised central maxiumum, except the class 5 which is doubled as it occurs
twice in the pinhole mask. Data for class 5 spacing is omitted.
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apertures in the array, their height depends on the number of apertures in the array. In
the case of three pinholes illuminated with fully spatially coherent light, the height of
the sidebands is one third of the normalised central delta function. For four pinholes,
the sideband height is one quarter that of the central delta function; for five pinholes,
the magnitude is one fifth. In Figure 4.3(a), the intensity cross-section for a simulation
of the pinhole array in Figure 4.2 illuminated with perfectly spatially coherent light
is shown. Figure 4.3(b) shows the corresponding normalised Fourier spectrum in this
case. As expected, for an array of 5 pinholes, the magnitude of the delta functions on
either side of the central maximum is one fifth the magnitude of the central peak.

The magnitude of the sidebands decreases with decreasing spatial coherence. Ac-
cording to Equation 4.8, taking the ratio of the magnitude of each sideband with re-
spect to the central (unnormalised) delta function and multiplying by a factor related
to the number of pinholes in the array, the visibility of the interference fringes can be
calculated. A plot of pinhole separation versus fringe visibility will give a value for
the complex degree of coherence, j12, which is analogous to γ12 defined previously.
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4.3 Experimental Results

4.3.1 Measurements at 193nm

Spatial coherence measurements were carried out by illuminating the 10 µm and
15 µm pinhole arrays with an ArF excimer laser operating at 193 nm. This is an ATLex
300 laser source with a high voltage electrical discharge (12− 25 kV) capable of gen-
erating 7 ns duration pulses at 193nm. The laser has a stable resonator configuration
with two plane parallel mirrors. The output coupler is made of an MgF2 substrate
and is coated with R = 25 % reflection coating. The rear mirror is also made of MgF2,
but is covered with a high reflective coating (R > 98 %).

To avoid saturating the detector, the beam is attenuated. The attenuation used was
a programmable Optec AT4020 Energy Controller. It relies on the principle of the shift
in cut-off wavelength which occurs when a multi-layer dielectric high-pass edge filter
is tilted with respect to the beam. The attenuating element is a fused silica plate for
use at wavelengths down to 193nm and below. Transmission reduces progressively
with tilt angle in a non-linear fashion to a low value of typically < 5 % at 45 ◦ tilt. The
part of the beam not transmitted is reflected at twice the title angle (90 ◦ for minimum
transmission). In the AT4020 this reflected component is scattered/absorbed in a light
trap/heat sink surrounding the optics. One complete turn of the operating dial gives
a 45 ◦ plate tilt.

The attenuated beam illuminates the mounted pinhole arrays. The arrays are
mounted with three degrees of freedom, and connected to the detector using a bag
bellows to avoid contamination from background light and minimise reflections. The
detector used was a Hamamatsu C8484-16C UV Digital Camera. Measurements were
carried out using 10µm, and 15µm pinhole arrays in both horizontal and vertical ori-
entation to correspond to the long and short axes of the beam respectively.

Figures 4.4 and 4.6 show the raw images from the 193nm source after passing
through 10 µm and 15 µm pinhole arrays respectively (arrays B and C in Figure 4.1). In
both cases, we can almost observe the classic Airy disk diffraction pattern created by
the laser light passing through the circular apertures. The Airy disk rings are clearer
in Figure 4.5, which is a greyscale version of Figure 4.4. The size and form of the Airy
disk is given by

I(θ) = I0

(
2J1(ka sinθ)

ka sinθ

)2

(4.9)

where a is the radius of the circular aperture (in this case 5 µm and 7.5 µm), k is
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Figure 4.4: Raw intensity images using 10 µm pinholes on the 193 nm ArF laser source.
(a) Interference pattern generated by pinholes orientated along the long axis, and (b)
along the short axis of the beam.

(a)

pixels

p
ix

e
ls

200 400 600 800 1000

100

200

300

400

500

600

700

800

900

1000

(b)

pixels

p
ix

e
ls

200 400 600 800 1000

100

200

300

400

500

600

700

800

900

1000

Figure 4.5: A greyscale version of the raw intensity images using 10 µm pinholes on
the 193 nm ArF laser source. (a) Interference pattern generated by pinholes orientated
along the long axis, and (b) along the short axis of the beam. The classic Airy pattern
becomes more visible with a change of contrast.
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given by 2π/λ, and J1 is a Bessel function of the first order. The size of the aperture
determines the size of the central spot in the diffraction pattern; the smaller the aper-
ture, the larger the spot size. The central spot size observed in the diffraction pattern
produced by the 15 µm is indeed smaller than the pattern produced by the 10 µm
pinholes.

Within the Airy disk envelope we observe the interference pattern created by the
multiple pinholes illuminated by spatially partially coherent light. A larger number
of interference lines are observed along the short axis of the beam in data taken with
both the 10 µm and 15 µm pinholes. In Figures 4.8(a) and 4.10(a), we observe deep
modulation in the intensity profile for measurements taken along the short axis of the
beam, indicating a higher degree of coherence. This modulation is less pronounced
in the data gathered along the long axis of the beam (Ref: Figures 4.7(a) and 4.9(a)),
indicating a lower degree of coherence in this plane. This is especially obvious in the
data taken using the 15 µm pinholes (see Figure 4.9).
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Figure 4.6: Raw intensity images using 15 µm pinholes on the 193nm ArF laser source.
(a)Interference pattern generated by pinholes orientated along the long axis, and (b)
along the short axis of the beam.

To process this interference data, a line sample was selected perpendicular to the
interference lines, through the centre of the image, to include the pixels of maximum
intensity. This sample was extended to include 10 pixels either side (total 21 lines
of intensity values) and integrated to calculate an average intensity value. Finally, a
Fourier transform was performed on the resulting 1× n array of averaged intensity
values, where n is the number of pixels in the original line sample. The degree of
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Figure 4.7: (a) Intensity cross-section (unnormalised) and (b) corresponding averaged
1-D Fourier transform of a sample taken along the long axis of the beam using 10 µm
pinholes illuminated at 193 nm (see Figure 4.4 (a)).
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Figure 4.8: (a) Intensity cross-section (unnormalised) and (b) corresponding averaged
1-D Fourier transform of a sample taken along the short axis of the beam using 10 µm
pinholes illuminated at 193 nm (see Figure 4.4 (b)).
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Figure 4.9: (a) Intensity cross-section (unnormalised) and (b) corresponding averaged
1-D Fourier transform of a sample taken along the long axis of the beam using 15 µm
pinholes illuminated at 193 nm (see Figure 4.6 (a)).

−15 −10 −5 0 5 10 15
0

1000

2000

3000

4000
(a)

mm

In
te

n
s
it
y
 (

u
n
n
o
rm

a
lis

e
d
)

−15 −10 −5 0 5 10 15
0

2

4

6
x 10

5 (b)

Spatial Frequency (normalised)

A
v
e
ra

g
e
d
 1

−
D

 F
o
u
ri
e
r 

T
ra

n
s
fo

rm

Figure 4.10: (a) Intensity cross-section (unnormalised) and (b) corresponding aver-
aged 1-D Fourier transform of a sample taken along the short axis of the beam using
15 µm pinholes illuminated at 193 nm (see Figure 4.6 (b)).
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spatial coherence can be deduced from the Fourier spectrum as follows. Taking the
unnormalised data in the Fourier magnitude spectrum, the ratio of the magnitude of
each delta function with respect to the central delta function is calculated. This ratio
is then multiplied by a factor relating to the number of pinholes in the array, which is
5 in this case. The result is a measure of the visibility, which we can equate to j12, the
complex degree of coherence.
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Figure 4.11: Plot of average visibility(%) as a function of pinhole separation ( µm) for
the long and short axis of a 193 nm source. The pinholes used in the measurements
were 10 µm and 15 µm in diameter.

In Figure 4.11, we plot visibility as a function of hole distance. The shortest hole
distance corresponds to the smallest separation in the pinhole array. Each subsequent
hole distance on the plot relates directly to a pinhole separation, or the interference
between a pinhole pair. According to Zernike [45] “the degree of coherence of two light-
vibrations shall be equal to the visibility of the interference fringes that may be obtained from
them under the best circumstances, that is, when both intensities are made equal and only
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small path-differences introduced”. We can assume that the experimental conditions sat-
isfy these conditions, and thus the maximum value of the visibility in the long and
short axis of the beam for the 193 nm source (and also the 248 nm source) is equal to
the degree of coherence γ. For this 193 nm source, the coherence length in the long
axis is slightly greater than along the short axis.

4.3.2 Measurements at 248nm

Further spatial coherence measurements were taken using 248 nm KrF Excimer source.
This is a pulsed source running at 5 Hz with an output of 4.2 mJ. The raw laser beam
had a rectangular profile 8 mm by 3mm approx arriving at the pinhole plate. The setup
used in these measurements was the same as used for the 193nm source, with the ex-
ception that a different attenuation method was used when necessary. This laser is
in use in a lithographic system at HP DIMO (Leixlip), with a beamsplitter ‘dumping’
some of the light before entering the lithographic optics. Measurements were taken
using this unused arm of the system.

The measurement apparatus is similar to that used for the measurements at 193 nm.
The laser light is incident on the pinhole array which is attached to the detector by a
flexible bag bellow. When necessary (to avoid saturation of the detector), the source
was attenuated using a Neutral Density Filter (ODE = 0.8), giving a transmission of
15− 16 % at 248 nm.
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Figure 4.12: Raw intensity images using 10 µm pinholes on the 248 nm KrF laser
source. (a)Interference pattern generated by pinholes orientated along the short axis,
and (b) along the long axis of the beam.
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Figure 4.13: Raw intensity images using 15 µm pinholes on the 248 nm KrF laser
source. (a) Interference pattern generated by pinholes orientated along the short axis,
and (b) along the long axis of the beam.

As before, the pinhole plate was orientated such that both vertical and horizontal
measurements were taken, corresponding to the long and short axis of the beam pro-
file respectively. Figure 4.12 shows the output image from the camera for the case of
the 10 µm pinholes. Figure 4.12(a) shows the interference resulting from the spatial
correlations along the short axis of the beam. Figure 4.12(b) represents the spatial cor-
relations along the long axis of the beam. Figure 4.13 shows the interference patterns
observed on illuminating the 15 µm pinholes at 248 nm; Figure 4.13(a) is the interfer-
ence observed along the short axis of the beam, and Figure 4.13(b) is the result along
the long axis of the beam.

As with the 193 nm data, a line sample was selected perpendicular to the inter-
ference lines, through the centre of the image, to include the pixels of maximum in-
tensity. This sample was extended to include 10 pixels either side and integrated to
calculate an average intensity value. A Fourier transform was then performed on the
the resulting 1× n array of averaged intensity values, where n is the number of pixels
in the original line sample. Figure 4.14 shows the normalised intensity cross-section
and the unnormalised Fourier transform of the raw image data as seen in 4.12(a).
Similarly, Figure 4.15 corresponds to the image seen in Figure 4.12(b).

The data from the 15 µm pinholes is given in Figures 4.16 and 4.17. Observing the
intensity cross-section (Figures 4.14(a), 4.15(a), 4.16(a), and 4.17(a)), we can deduce
that the spatial coherence of this source is slightly greater along the short axis of the
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Figure 4.14: (a) Intensity cross-section (normalised) and (b) corresponding 1-D
Fourier transform of an integrated sample (unnormalised) taken from the correlation
data along the short axis of the beam (see Figure 4.12(a)).

beam than along the long axis. To investigate this further, we plot the visibility of the
interference fringes, in both cases, as a function of pinhole separation.

Figure 4.18 shows the visibility of the interference fringes as a function of pinhole
separation for both the long and short axes for the 248 nm source. An estimate of the
spatial coherence of the source in both directions can be taken at a reference level of
50 % visibility, which in this case gives a coherence length of 285 µm in the short axis.
If we compare these results with those obtained by Coherent Inc following the most
recent off-site repair, they are consistent. The source has a greater coherence length in
the short axis of the beam than in the long axis. Coherent give a value of 275 µm and
our results give an initial estimate of ≈ 270 µm for the coherence length in the short
axis of the beam. In the long axis, Coherent Inc report a coherence length of 75 µm.
Our apparatus did not register a measurement for pinhole separation of less than
80 µm which falls below the 50 % visibilty reference level that we used to estimate
the spatial coherence length. However, this result is still suitable for inclusion in our
beam model as the entire coherence distribution is taken into account.
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Figure 4.15: (a) Intensity cross-section (normalised) and (b) corresponding 1-D
Fourier transform of an integrated sample (unnormalised) taken from the correlation
data along the long axis of the beam (see Figure 4.12(b)).
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Figure 4.16: (a) Intensity cross-section (normalised) and (b) corresponding 1-D
Fourier transform of an integrated sample (unnormalised) taken from the correlation
data along the short axis of the beam (see Figure 4.13(a)).

Figure 4.17: (a) Intensity cross-section (normalised) and (b) corresponding 1-D
Fourier transform of an integrated sample (unnormalised) taken from the correlation
data along the long axis of the beam (see Figure 4.13(b)).
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Figure 4.18: Plot of average visibility (%) as a function of pinhole separation (µm) for
the long and short axis of a 248 nm source. The pinholes used in the measurements
were 10 µm and 15 µm in diameter. Overall, the trend seen here is similar to the results
for the 193 nm beam (see Figure 4.11), with a higher degree of coherence present along
the short axis of the beam.
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4.3.3 The Coherence Distribution

A Gaussian fit was applied to the coherence distribution data for both the 193 nm
and 248 nm sources. In both cases, the fit was applied to the experimental data us-
ing the curve fitting toolbox in Matlab. The Gaussian curve was not constrained to
pass through the maximum visibility point. The reason for this is that the maximum
visibility was not measured experimentally. In theory, a maximum visibility measure-
ment of 100 % is achievable for two overlapping pinholes illuminated with partially
coherent light. If the pinholes overlap completely, the incident light passes through
the overlying pinholes and no interference occurs. The visibility in this case is, in
theory, 100 %. However, we can assume that if we were to have completed this mea-
surement in the laboratory, it would be subject to the same error as the other measure-
ments taken. Therefore, it is inaccurate to constrain the Gaussian fit to pass through
this point.

Coherence Distribution at 193nm

A Gaussian distribution was applied to the coherence distribution data gathered from
the 193 nm source. In Figure 4.19 (a), the original coherence distribution data for the
short axis of the 193 nm source is shown as the starred data points. In Figure 4.19 (b),
the starred data points refer to the original coherence distribution data for the long
axis of the 193 nm source. In both plot (a) and (b), the Gaussian fit is shown as a solid
red line.

The Root Mean Square (RMS) error for the Gaussian fit applied to the data taken
for the short axis of the 193 nm beam (Figure 4.19 (a)) is 12.24 %. For the fit applied to
the data corresponding to the long axis of the beam (Figure 4.19 (b)), the RMS error is
7.20 %.

Coherence Distribution at 248nm

Similarly, a Gaussian fit was applied to the coherence distribution data gathered from
the 248 nm source. Figure 4.20 (a) shows the measured coherence distribution data
for the short axis of the source (starred data points) and the best Gaussian fit is given
as a solid red line. The coherence distribution data for the long axis of the source
beam (starred data points) and corresponding Gaussian fit (solid red line) is plotted
in Figure 4.20 (b).
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Figure 4.19: Best Gaussian fit of coherence distribution data across the (a) short and
(b) long axes of the 193 nm source.
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The Root Mean Square (RMS) error for the Gaussian fit applied to the data taken
for the short axis of the 248 nm beam (Figure 4.20 (a)) is 5.47 %. For the fit applied to
the data corresponding to the long axis of the beam (Figure 4.20 (b)), the RMS error is
8.53 %.
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Figure 4.20: Best Gaussian fit of coherence distribution data across the (a) short and
(b) long axes of the 248 nm source.

4.3.4 Error Discussion

The error in the measurements and subsequent data processing is difficult to quantify.
Experiments were carried out over two visits to DIMO in May and June 2010. It is
necessary to take the measurements manually as the optimum position must be found
for each pinhole size and orientation. The measurements are carried out on the raw
laser beam, which has a different intensity distribution in the horizontal and vertical
axes; the beam is not uniform in intensity. Thus for each series of measurements, the
position of the pinhole array was adjusted manually to be as close to the centre of
the beam as possible, as this is the area of the beam that is used in the subsequent
imaging system. If it were possible to automate the data collection process, several
sets of measurements could be taken to reduce the experimental error. However, this
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is not feasible here.

Some error will also occur in the processing of the data. A line of pixels is user-
selected, and their values are averaged along with 10 adjacent lines of pixel values
on either side. There will be some error present in the line selection. It is desirable
to select a line of pixels that is perpendicular to the interference lines observed in the
diffraction envelope, and an angular deviation from the ideal perpendicular line may
cause error in the subsequent data analysis.

However, taking these sources of error into account, the coherence results pre-
sented here are in line with what we expect from partially spatially coherent excimer
sources. In the next chapter, we will apply this coherence data to the numerical model
of an excimer beam using the Elementary Function Method.
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Laser Beam Modelling

In the previous chapter, spatial coherence was measured for two different UV excimer
sources. These spatial coherence measurements, along with those of the intensity pro-
file of the beam, are the key inputs to a real beam model. In this chapter, intensity pro-
file measurements of the 193 nm and 248 nm sources are presented (see Section 5.1).
Next, in Section 5.2, we apply the Elementary Function method to a 1-D Gaussian
Schell-model beam, noting the shape of the cross-spectral density, elementary func-
tion and weighting function. We also discuss the sampling criterion. In Section 5.3,
the spatial coherence and beam profile measurements are introduced to the model,
and the elementary function for the real 248 nm beam is generated. Finally, in Sec-
tion 5.4, the method is applied to a simple edge-imaging problem, and compared
with the theoretical results from spatially coherent and incoherent sources.

5.1 Beam Intensity Profile Measurements

Measurements of intensity in the beam profile were taken for both the 193 nm and
248 nm sources. In both cases, a number of frames were averaged, and a cross-section
taken through the center of the averaged intensity plot to give the average 1-D in-
tensity profile for the long and short axes of the beam. Some further processing was
necessary for the data from the Braggstar 248 nm source, including the use of a spatial
filter to smooth out the profile.
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Measurements at 193nm

Some initial beam profile measurements were taken of the 193 nm source using an
Ophir Beamstar FX laser beam profiler. Figure 5.1 shows the average of 8 beam profile
images. Each image was made up of 340× 240 pixels, and the pixel size was 0.0074×
0.0074 mm square (full frame dimension 2.368× 1.776 mm).
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Figure 5.1: Averaged intensity profile image for the 193 nm ATLex source beam.

Figure 5.2 is the normalised intensity profile for (a) the long axis, and (b) the short axis
of the 193 nm beam. The intensity profile for the short axis of the beam bears some
resemblance to a broad Gaussian distribution. However, the long axis deviates from
the expected top-hat intensity profile. The poor uniformity in the intensity profile
means that this raw laser beam is unsuitable for lithographic applications unless some
reshaping and homogenizing optics are applied to the beam. This laser is mostly used
for laser ablation processes, where the surface area of the beam in use is small and the
most suitable portion of the beam can be chosen. In reality, one can assume that the
results in this case are not optimum and a more uniform profile is desirable.

Measurements at 248nm

Beam profiling measurements were carried out on the 248 nm Braggstar source using
a Newport LBP-1-USB Laser Beam Profiler. The data was saved as two .avi (Audio
Video Interleave) files, and the individual frames were extracted using Matlab. The
source operates in pulsed mode, resulting in some ‘blank’ frames recorded between
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Figure 5.2: Intensity cross-section (normalised) of the (a) long and (b) short axis of
193 nm ATLex source. Several discontinuities are visible across the intensity profile,
most likely a result of dust on the sensor.
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pulses. A total of 187 frames were averaged (47 frames from the first video clip, and
140 frames from the second clip). The averaged imaged is shown in Figure 5.3.
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Figure 5.3: Average of 187 beam profile images of the 248 nm Braggstar source. Arti-
facts in the form of horizontal lines are visible in the image as a result of interlacing.

Each frame grabbed from the .avi file was 720× 576 pixels. The short axis of the beam
was oriented along the 720 pixel side, and with each pixel corresponding to 9.0595 µm,
this represented 6.52 mm. The profile of the long axis of the beam comprised 576
pixels, each measuring 8.3 µm, corresponding to 4.78 mm.

An artifact is visible in Figure 5.3 in the form of horizontal lines in the image.
This artifact seems to be the result of ‘interlacing’. Normal videos record two frames
at 50 Hz and they are then interlaced to produce the final 25 Hz image. The .avi
files saved by the beam profiling software appears to be missing one of the images.
Figure 5.4 shows the cross-section of the long axis of the averaged raw beam profile
image from Figure 5.3. The missing data creates a series of low values across the
profile representing the background level/dark noise in the ccd. To overcome this
issue, the missing data was filled in by interpolation and extrapolation of the missing
data points using the nearest neighbour method in the curve fitting toolbox in Matlab.

The background data was removed by defining four 21× 21 arrays of intensity val-
ues taken from four different areas around the beam in the raw images. The average
background intensity was subtracted from the intensity cross-section profiles for the
long and short axes. Figure 5.5 shows the normalised intensity cross-section (back-
ground removed) for (a) the short axis and (b) the long axis of the 248 nm Braggstar
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Figure 5.4: Intensity cross-section (normalised) of the long (y) axis of the raw 248 nm
Braggstar beam
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Figure 5.5: Intensity cross-section (normalised) of the (a) short and (b) long axis of
248 nm Braggstar source including interpolated data.
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beam. In both cases, the intensity profile is a similar shape to that expected from an
excimer laser beam: the intensity profile along the short axis of the beam is a Gaussian
distribution, and the expected top-hat distribution of intensity is seen along the long
axis of the beam.

To use this beam profile data in the system model, the noisy intensity curves
must be smoothed. The intensity data for the long and short axes of the beam were
smoothed by applying a Savitzky-Golay filter. Savitzky-Golay smoothing filters (also
called digital smoothing polynomial filters or least-squares smoothing filters) are typ-
ically used to smooth out a noisy signal whose frequency span (without noise) is large.
The Savitzky-Golay filter can be thought of as a generalized moving average which
preserves features of the distribution such as relative maxima, minima and width,
which are often distorted by other averaging techniques. The filter coefficients are
derived by performing an unweighted linear least-squares fit using a polynomial of a
given degree. The smoothing is computed using the algorithm described by Savitzky
and Golay [88]. The algorithm computes a local polynomial regression on the input
data by solving the following equation:

y(t) = a0 + a1t + a2t2 + . . . (5.1)

up to order R. That is

y(t) =
R

∑
r=0

artr (5.2)

In general, higher degree polynomials can more accurately capture the heights and
widths of narrow peaks, but can do poorly at smoothing wider peaks. In this data
set, we are dealing with one wide "peak" in the long and short axis, so a second or-
der polynomial was sufficient to smooth the curves. Figure 5.6 shows a comparison
between the raw beam profile data (solid red line) and the filtered data (solid black
line) for (a) the short axis and (b) the long axis of the 248 nm source. In both cases
the raw data has been smoothed to give a curve with less noise which is more easily
modelled.

The Elementary Function method involves a series of Fourier transforms which
require that the intensity profile of the beam is centered correctly. It is also necessary
that the intensity profile is symmetrical: an assumption of the Elementary Function
theory is that the cross spectral density, and thus the elementary function, is real and
even. In order to symmetrize the beam, the centroid of the smoothed data was found
using the following formula:
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Figure 5.6: Comparison of raw beam profile data (red) and data smoothed using a
Savitzky-Golay filter (black) for (a) short and (b) long axis of 248 nm Braggstar source.
In both cases, the extrapolated data was used (background removed).
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Figure 5.7: Comparison of centered, symmetrized beam profiles and smoothed beam
profile data for (a) short and (b) long axis of 248 nm Braggstar source. The original
smoothed data is represented by the solid red line; the symmetrized beam is given by
the solid black line.
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C =
∑n cnxn

∑n cn
, (5.3)

where C is the centroid of a set of n elements. Each element is represented by cn, and
its position is denoted as xn. Once the location of the centroid was found, the beam
intensity profile was symmetrized and centered about that point. A comparison of
the original smoothed profile data and the symmetrized, centred data is presented in
Figure 5.7.

5.2 Elementary Function Method: Gaussian Schell-
Model Beam

The Elementary Function model was tested in the first instance for a Gaussian Schell-
model beam. We follow the method referred to in Section 3.4.2, where we avoid 4D
calculations by going directly to the 2D cross-spectral density, Ŵ0(u,−u). For clarity,
we recall Equation 3.63:

Ŵ0(u,−u) =
∫∫

∞
d2u′Û2(u− u′)γ̂(u′) (5.4)

where Û(u) and γ̂(u) are the Fourier transforms of U(r) (the intensity distribution)
and γ(r) (the coherence distribution) respectively. For this test case, both the intensity
and the coherence have a Gaussian distribution. To find the cross-spectral density, the
Fourier transform of the intensity distribution is calculated, and then squared to give
Û2. A Fourier transform is applied to the coherence distribution to give γ̂. These two
quantities are convolved to give Ŵ0(u,−u).

Referring to Equation 3.51, the Elementary Function can be found from Ŵ0(u,−u)
using the following relation

f̂ (u) ∝
√

Ŵ0(u,−u). (5.5)

The intensity distribution, the cross-spectral density, and the generated elementary
function are shown in Figure 5.8.

Next, using the sampling criterion outlined in [65], we calculate the number of
functions required to represent the source. The elementary functions are, in general,
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Figure 5.8: Comparison of the intensity distribution, cross-spectral density, and ele-
mentary function for a Gaussian Schell-model beam.
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not orthogonal, and thus finding the expansion coefficients becomes more difficult
than for orthogonal sets of functions. Unser [81] presented a sampling and interpo-
lation theory for nonorthogonal basis sets, which we use to find a sampling criterion
and to retrieve the values of the coefficients. The traditional Shannon-Whittaker sam-
pling criterion cannot be applied, since it implies that sinc functions of appropriate
width will be used as interpolation functions. In our case the interpolating function
(i.e. the elementary function) will not be a sinc function, and its width will be different
from that assumed in traditional sampling and interpolation.

We can write the intensity in terms of the cross spectral density

I0(r) = W0(r, r) = ∑
m

∑
n

amn f 2(r− rmn), (5.6)

and, from this, define our basis functions

ϕmn(r̃) = D f 2(∆x(x̃−m),∆y(ỹ− n)). (5.7)

The new coordinates r̃ = (x̃, ỹ) = x/∆x,y/∆y) ensure that the function is sampled at
integer values, and the constant D ensures that ϕ(0) = 1. These changes allow us
to use the three conditions for expansion presented by Unser. First, the sequence of
coefficients must be square-integrable, i.e.

‖a‖2 = ∑
m

∑
n
|amn|2 (5.8)

must exist. From Equation 5.6, we are aware of the dependence of amn on the inten-
sity, I0(r) and the square of the elementary function f 2(r). If we consider just one
dimension, and rewrite Equation 5.6 referring to the sampling distance, ∆x, we get

∑
m
|am|2 =

1
∆x

∫ 1/2∆x

−1/2∆x
du

∣∣∣∣∣ Î0(u)

f̂ 2(u)

∣∣∣∣∣
2

. (5.9)

This expression exists if Î0(u)/ f̂ 2(u) is square integrable on [−1/2∆x,1/2∆x], which
is fulfilled as long as the function has no singularities, i.e., as long as f̂ 2(u) has no
zeros in the interval. This has already been assumed. Thus Equation 5.8 is fulfilled
for any function of interest.

Second, the set of basis functions needs to form a Riesz basis. That means that the
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condition

A · ‖a‖2 ≤
∥∥∥∥∥∑m ∑

n
amn ϕmn(r)

∥∥∥∥∥
2

≤ B · ||a||2, (5.10)

where A > 0 and B < ∞, must be fulfilled. Note that if A = B = 1, then the basis
functions are orthonormal. The first inequality implies that the functions are linearly
independent, while the second inequality holds for any physical elementary func-
tions [65]. The third condition is the most demanding: the partition of unity condi-
tion:

∑
n

∑
m

ϕ(x̃ + m, ỹ + n) = 1, (5.11)

for all real (x̃, ỹ). In the Fourier domain it translates as

ϕ(m,n) = δmδn, (5.12)

where the difference from Equation 5.6 originates from different definitions of the
Fourier transform and

δm =

{
1 : m = 0
0 : m 6= 0

, (5.13)

where m is an integer. This condition affects how closely a function can be repro-
duced, by making the sampling step sufficiently small. Our elementary functions do
not fulfill this criterion exactly, so we are forced to accept an approximate version of
the partition of unity condition. We get a good idea of the sampling required if we
use the condition that

ϕ̂(0) = 1, (5.14)

while
ϕ̂(1,1) < c, (5.15)

where c≤ 0 is a small value considered negligible in the context and we have assumed
that the function is positive with a single maximum at (x̃, ỹ) = (0,0). Changing nota-
tion from ϕ(r̃) to f 2(r) changes the conditions into

f̂ 2 = 1/D (5.16)

and
f̂ 2

(
1

∆x
,

1
∆y

)
< c/D (5.17)

Equation 5.17 is used to determine the sampling intervals in ∆x and ∆y. The sampling
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distance, ∆x, is given as

∆x =
πσIσg√

(− ln c)(σ2
g + 4σ2

I )
, (5.18)

where σI represents the FWHM of the intensity distribution, and σg is the width of
the coherence distribution. The value given to c depends on what we consider to be
the full width of the Gaussian distribution. Common practice when handling a Gaus-
sian distribution exp(−x2/σ2) is often to consider values over a width of 6σ, i.e., for
|x| ≤ 3σ, while values for larger |x| are considered to be zero. This corresponds to us-
ing c = exp(−9)≈ 1.23× 10−4. The number of elementary functions to be propagated
is calculated by dividing the value for ∆x into the full width of the intensity distribu-
tion (i.e., 6σI). For this example case, we choose the values for σI and σg as 0.01 m and
0.02 m respectively. These values produce a ∆x of 0.0074 m which corresponds to 9
elementary functions. Starting with an elementary function positioned at the centre
of the source, we position 4 functions either side, each centered a distance of ∆x away
from the previous function. The weighting coefficients are calculated as a distribu-
tion, which we sample in the same way. The weighting distribution is calculated as
follows

∑
m

am = ∆x
Û0(0)

f̂ 2(0)
(5.19)

Each shifted elementary function is squared and then weighted to give the recon-
structed intensity distribution Ur(r):

Ur(r) = f 2(r)∑
m

am (5.20)

A plot of the 9 shifted, squared and weighted elementary functions required for
this Gaussian Schell-model beam example is shown in Figure 5.9. The sum of the
weighted functions is compared to the original intensity distribution in Figure 5.10;
the two are almost identical.

In Figure 5.11, the numerical results of the Elementary Function Method are com-
pared to the analytical results previously presented in Figure 3.2. Figure 5.11 (a),
(b) and (c) are calculated numerically using the same coherence width and intensity
width as in the analytic calculations shown in (d), (e), and (f) respectively. In each
case, the numerical result bears a close resemblance to the equivalent analytic re-
sult below it. In (d), the calculated weighting function has some negative elements
which drives the two second-to-largest shifted functions negative. In the numeri-
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Figure 5.9: Shifted and weighted elementary functions for a Gaussian Schell-model
source.
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Figure 5.10: Comparison of original intensity distribution and the reconstructed in-
tensity distribution for a Gaussian Schell-model source. The two plots are almost
identical.
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cal case, the weighting coefficients are positive, but the reconstructed intensity still
closely matches the original intensity profile.
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Figure 5.11: Comparison of analytical and numerical results for the Elementary Func-
tion Method applied to a Gaussian Schell-model beam. (a)-(c) Intensity (thick blue
line) and reconstructed intensity (red line) are shown for 1-D Gaussian Schell-model
beams of different degrees of coherence, along with the scaled and shifted squares of
the elementary functions (thin lines), as calculated analytically (as seen in Figure 3.2).
(d) - (f) Intensity and reconstructed intensity (thick line) are shown for 1-D Gaus-
sian Schell-model beams of different degrees of coherence, along with the scaled and
shifted squares of the elementary functions (thin blue lines), as calculated numeri-
cally. The intensity distribution is the same for all beams, with σI = 0.01 m, while
the coherence varies from high to low as (a), (d) σg = 0.03 m with 7 elementary func-
tions required, (b), (e) σg = 0.01 m with 13 elementary functions required, and (c), (f)
σg = 0.003 m with 39 elementary functions required.

As we discussed earlier in this section, we have considered the full width of the
Gaussian intensity distribution to extend over a width of 6σI . In practice, once the
weighting distribution is applied to the squared and shifted elementary functions,
the amplitude of many of the functions at the edge of the distribution drops to almost
zero; in the reconstructed intensity distribution, the main contribution comes from
the elementary functions placed close to the centre. To test the effect of decreasing
the defined width of the intensity distribution to 4σI , we consider the three cases in
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Figure 5.11. The results are shown in Figure 5.12. In each case, the intensity distribu-
tion is the same, with σI = 0.01 m, while the coherence varies as (a) σg = 0.03 m, (b)
σg = 0.01 m, and (c) σg = 0.003 m. The reconstructed intensity for a Gaussian width of
6σI is given by the blue line, the red line represents the 4σI case.
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Figure 5.12: Comparison of the reconstructed intensity using the Elementary Function
model for different Gaussian distribution widths. In each case, the intensity distribu-
tion is the same, with σI = 0.01 m, while the coherence varies from high to low as (a)
σg = 0.03 m, (b) σg = 0.01 m, and (c) σg = 0.003 m. The reconstructed intensity for a
Gaussian width of 6σI is given by the blue line, the red line represents the 4σI case.

In all three examples, when the defined Gaussian width was reduced to 4σI , the
reconstructed intensity deviated from that produced in the 6σI case. From this we can
assume that using the 6σI definition of the Gaussian distribution width is necessary
to ensure the shifted and weighted elementary functions sufficiently reproduce the
intensity profile.

5.3 Elementary Function Method: 248 nm Excimer
Laser Beam

The next step was to apply the Elementary Function model to a real beam; in this case
we use the measured intensity profiles and coherence distributions of the long and
short axes of the 248 nm Braggstar source. As in Section 5.2, we go directly to the 2-D
cross-spectral density, Ŵ0(u,−u), and following the same series of steps, we arrive at
the elementary function, as shown in Figure 5.13.

Initially, we assumed that the sampling criterion outlined in the previous section
for the Gaussian Schell-model beam is sufficient for this more “Super-Gaussian” in-
tensity distribution. However, this resulted in under-sampling. In Figure 5.14 we see
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Figure 5.13: Comparison of original intensity distribution, cross-spectral density, and
elementary function for the (a) short and (b) long axis of the 248 nm Braggstar source.
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Figure 5.14: Comparison of original intensity distribution and the reconstructed
intensity distribution for the (a) short and (b) long axis of the 248 nm Braggstar
source using the sampling criterion for the Gaussian Schell-Model beam. This under-
sampling produces a noisy reconstructed intensity in both axes as a result of insuffi-
cient overlap of the elementary functions.
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this under-sampling manifests itself as a noisy intensity distribution for the recon-
structed beam. The width of the elementary function is small, and the sampling pre-
dicted by the Gaussian Schell-model case results in an insufficient overlap between
adjacent functions. The top of each shifted and weighted elementary function is vis-
ible in the reconstructed intensity plots in Figure 5.14. Thus a larger overlap than
predicted by the Gaussian Schell-model is needed to accurately sample the beam. We
return to the initial sampling criterion outlined in [65] and, using Equation 5.17, the
sampling distance ∆x can be found. The weighting distribution, a(r), is calculated by
evaluating the following relation and taking the inverse Fourier transform:

â(u) =
Û0(u)

f̂ 2(u)
, (5.21)

where Û0(u) is the Fourier transform of the intensity distribution, f̂ 2(u) is the Fourier
transform of the square of the elementary function, and â(u) is the Fourier transform
of the weighting distribution. Due to the deviation of the original intensity profiles
from a smooth Gaussian envelope, the calculated weighting is a noisier distribution
than before. The Fourier transform of the weighting distribution for the long and
short axes is given in Figure 5.15. For both the long and short axes of the beam, high
frequency noise is present. Carrying out an inverse Fourier transform produces the
weighting distribution, which is then sampled and applied to the shifted and squared
elementary functions.

The high frequency noise present in the weighting distribution, as seen in the plots of
the Fourier transform of the distribution (Figure 5.15), carries through when applied
to the shifted and squared elementary functions and, as a result, the reconstructed
intensity is noisy. It is necessary to reduce the noise in the weighting calculation to
produce a smoother reconstructed intensity.

Dealing with Noise

When faced with the issue of reducing or removing noise in an imaging system, we
have a few options. An inverse filter can be used as a way to work back to the original
system input, but the results are not always reliable, as we will discuss below. An-
other option available is the Wiener filter. This is the mean square error linear filter for
images degraded by additive noise and blurring. First proposed by Wiener in 1949,
its purpose is to reduce the amount of noise present in a signal by comparison with
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Figure 5.15: Plot of the Fourier transform of the weighting distribution calculated for
the (a) short and (b) long axis of the 248 nm Braggstar source. Some high frequency
noise is evident.
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an estimation of the desired noiseless signal. Calculation of the Wiener filter requires
the assumption that the signal and noise processes are second-order stationary. We
discuss these filters below, with notation taken from [89].

Consider a simple imaging system:

g(x,y) =
∫ ∫

f (x′,y′)h(x− x′,y− y′)dx′dy′ + n(x,y) (5.22)

where g(x,y) is the image (or output), h(x,y) is the impulse response (PSF) of the
system, and f (x′,y′) is the quantity we wish to restore. For a real system, we must
also include an additive noise term, n(x,y). If we Fourier transform both sides of this
equation, we get

G(kx,ky) = F(kx,ky)H(kx,ky) + N(kx,ky) (5.23)

If we have an ideal situation where the additive noise term n(x) is negligible, then

F(kx,ky) =
G(kx,ky)

H(kx,ky)
= Y(kx,ky)G(kx,ky) (5.24)

and thus
f (x,y) = F−1{Y(kx,ky)G(kx,ky)} (5.25)

whereF−1 denotes the inverse Fourier transform. The frequency domain filters

Y(kx,ky) =
1

H(kx,ky)
, (5.26)

where H(kx,ky) is the system optical transfer function (OTF), is called the inverse filter.
In practice, the straight inverse filter rarely works satisfactorily, because if the OTF of
the system drops to zero, the magnitude of the inverse filter, Y(kx,ky), will approach
infinity. Furthermore, if we apply the inverse filter in the case where noise is present,
we get

F̂(kx,ky) = Y(kx,ky)G(kx,ky) =
G(kx,ky)

H(kx,ky)
+

N(kx,ky)

H(kx,ky)

= F(kx,ky) +
N(kx,ky)

H(kx,ky)
(5.27)

where the ‘hat’ notation denotes an estimated quantity. The recovered frequency
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spectrum has an additional term: the noise spectrum N(kx,ky) divided by the OTF
H(kx,ky). If this term is minimised, then the estimated spectrum will approach the
true input spectrum. However, in practice, the noise spectrum is unknown to us, and
in general is likely to have significant high frequency content.

An alternative approach in the presence of noise is the Wiener filter. We can define
the Wiener filter, G(u,v), as follows:

Y(kx,ky) =
H∗(kx,ky)

|H(kx,ky)|2 +
WN(kx ,ky)

WF(kx ,ky)

(5.28)

where H∗ is the complex conjugate of the OTF, WF(kx,ky) is the input power spec-
trum, and WN(kx,ky) is the noise power spectrum, i.e.

WF(kx,ky) = 〈|F(kx,ky)|2〉 and WN(kx,ky) = 〈|N(kx,ky)|2〉 (5.29)

We can consider the term WN(kx,ky)/WF(kx,ky) as the reciprocal of the signal-to-noise
ratio. When the signal is very strong relative to the noise, WN(kx,ky)/WF(kx,ky) ≈ 0
and the Wiener filter becomes H−1(kx,ky), the inverse filter for the PSF. Conversely,
when the signal is very weak, noise dominates, and Y(kx,ky)→ 0.

A drawback of the Wiener filter is that it is unable to reconstruct frequency com-
ponents which have been degraded by noise or components for which H(kx,ky) = 0.
In some cases, an averaging of noise through interpolation is more effective than ap-
plying a filter. For the purposes of this study, we simply set the high frequency noise
to zero. While this may not be the most accurate method of reducing the noise in the
weighting calculation, an investigation into a more rigorous approach is beyond the
scope of this project.

In Figure 5.16, the Fourier transform of the weighting distribution for the 248 nm
Braggstar source is shown, with the high frequency noise components removed. An
inverse Fourier transform is carried out on the noise-reduced quantities to give the
weighting distribution, which is then sampled and applied to the squared and shifted
elementary functions. The sum of the weighted elementary functions is compared to
the original intensity distribution and presented in Figure 5.17. Reducing the noise in
the weighting distribution results in a smoother reconstructed intensity profile, and
for both the (a) short and (b) long axes, the reconstructed intensity plot corresponds
well with the original intensity profile.
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Figure 5.16: Plot of the noise-reduced Fourier transform of the weighting distribution
calculated for the (a) short and (b) long axis of the 248 nm Braggstar source.
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Figure 5.17: Comparison of the original intensity distribution and the noise-reduced
reconstructed intensity distribution calculated for the (a) short and (b) long axis of the
248 nm Braggstar source.
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5.4 Imaging an Opaque Edge

In 1965, Watrasiewicz published his work on the “Theoretical calculations of images of
straight edges in partially coherent illumination” [90]. Based on Hopkins’ approach to
partial coherence [91], the intensity in the image plane is calculated due to one point
of the effective source, followed by integration over the whole area of the effective
source to give the intensity distribution due to the whole source. Watrasiewicz per-
formed calculations for various degrees of coherence, where the coherence is defined
relative to the numerical apertures of the system, i.e.

S =
NAc

NAo
(5.30)

where NAc and NAo represent the numerical aperture of the condenser and the ob-
jective respectively, and S is equivalent to the degree of coherence. For illumination
with coherent light, S→ 0, and in the presence of incoherent illumination, S→ ∞.
For calculations involving values of S between these two extremes, the illumination
is considered partially coherent. Watrasiewicz compared the intensity in the image of
a straight opaque edge for various values of S. For S→ 0, the intensity at the edge
in the image plane was 25 % of the original edge intensity. As S approaches the in-
coherent limit, the image intensity at the edge is 50 % of the original edge intensity.
For partially coherent illumination, the edge intensity in the image lies between these
values: for example, when S = 1.0, the intensity at the edge drops to 33 %. Figure 5.18
shows the intensity at the edge in the image of an opaque edge illuminated by co-
herent and incoherent plane waves. The illumination is uniform across the edge and,
as expected, the intensity drops to approximately 50 % and 25 % for incoherent and
coherent light respectively.

For initial partial spatially coherent calculations we assume the source to be a
Gaussian Schell-model source. The partially coherent image of an opaque edge was
calculated and compared with the image of an opaque edge for incoherent and co-
herent illumination with a Gaussian intensity distribution. The results are shown
in Figure 5.19. In all cases, the width of the Gaussian intensity distribution is the
same (σI = 1000 µm) and the coherence width (σg) was varied. In Figure 5.19 (a) σg =

100 µm, which requires 115 elementary functions to be propagated, (b) σg = 10 µm,
requiring 1145 elementary functions, and in (c) σg = 1 µm, with 11459 elementary
functions to be propagated. The numerical aperture of the imaging system is 0.55 and
the wavelength is 248 nm. In Figure 5.19 (a), (b) and (c) the intensity at the edge of the
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Figure 5.18: Intensity distribution in the image of a straight opaque edge illuminated
by coherent and incoherent light.
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image corresponds well with the purely coherent case despite the decreasing coher-
ence. In fact, the green line representing the partially coherent data lies directly on top
of the blue coherent data line in these first 3 plots. The reason for this is that in each
of these cases the defined width of the coherence distribution is still large compared
to the psf of the imaging system. As such, the intensity at the edge in the image of
the opaque edge appears consistent with coherent imaging. In Figure 5.19 (d), σg is
sufficiently small that the imaging appears less coherent, all three data lines are visi-
ble on the plot, and the intensity at the edge lies between the coherent and incoherent
extremes.
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Figure 5.19: Intensity distribution in the image of a straight opaque edge illuminated
by coherent, incoherent, and partially coherent light with a Gaussian intensity distri-
bution. The intensity width is the same in all cases, σI = 1000 µm, and the coherence
width varies with (a) σg = 100 µm, requiring 115 elementary functions, (b) σg = 10 µm,
requiring 1145 elementary functions, (c) σg = 1 µm, requiring 11459 elementary func-
tions, and (d) σg = 0.1 µm, requiring 114591 elementary functions. In (a), (b) and (c),
the green line representing the partially coherent data obscures the blue line repre-
senting the coherent data line which lies directly below it.
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Next, the opaque edge is illuminated by the real beam in 1-D. Again, the wavelength
is 248 nm and the system numerical aperture is 0.55. The results are given in Fig-
ure 5.20. The spatial coherence distribution in both the (a) short and (b) long axis is
large compared to the psf of the imaging system, and, as we expect (given the results
in Figure 5.19), the intensity in the image of an opaque edge illuminated by the real
beam corresponds with the purely coherent case. As before, the data line given by
coherent illumination (blue) is obscured by the partially coherent data line (green)
which lies directly on top of it.
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Figure 5.20: Intensity distribution in the image of a straight opaque edge illuminated
by coherent, incoherent, and partially coherent light. (a) corresponds to the measured
data for the short edge of the 248 nm beam, with the intensity width σI = 0.003 m,
and the coherence width σg = 0.0007 m, and (b) corresponds to the measured data
for the long edge of the 248 nm beam, with an intensity width σI = 0.0085 m, and the
coherence width σg = 0.0002 m. As seen in Figure 5.19, the blue data line represent-
ing coherent illumination is completely obscured by the green data line representing
partially coherent illumination.

At this point, the Elementary Function Method has been successfully applied to a
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Gaussian Schell-model beam of various degrees of spatial coherence, and to the real
248 nm Braggstar excimer source. The results of imaging an opaque edge have proven
useful in understanding high resolution imaging at this level. A partially coherent
source with a relatively high degree of spatial coherence (i.e. the excimer source) will
appear approximately coherent as long as the FWHM of the coherence distribution is
greater or equal to the FWHM of the point spread function of the system. Imaging
at 248 nm with a numerical aperture of 0.55 produces a narrow point spread function
with a FWHM on the order of a micron or less. The effects of imaging with partially
spatially coherent light will only become apparent when the coherence distribution
becomes narrower than this. In the next Chapter, we will investigate the effects of an
imaging beam homogenizer which, we expect, will highlight some of the difficulties
experienced when working with light with a high degree of spatial coherence.
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Modelling an Imaging Beam

Homogenizer

In Chapter 1, beam homogenization was introduced as an essential process for litho-
graphic applications requiring high level beam uniformity. The raw beam emerging
from an excimer laser changes its spatial intensity distribution over time and, in an ef-
fort to ensure a stable illumination source, various types of homogenizing devices are
now an essential component of modern lithographic systems. In this chapter, starting
in Section 6.1, we explore the method behind beam integration and its effectiveness
in beam homogenization. In Section 6.1.2, we look at modelling an imaging beam
homogenizer using the theory of multiple beam interference. This method is tested
for coherent and incoherent sources, and, in Section 6.2, is applied to the Elementary
Function Method. However, the end result appears to indicate that in practice the
excimer laser source is actually so spatially coherent that very little smoothing of the
intensity distribution is obtained in the homogenization process due to the coherence
properties of the beam.
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6.1 Beam Homogenization Optics

The homogenization of laser beams is an important issue in the areas of laser mate-
rial processing, laser measuring techniques and laser analysis. In lithography, uni-
form illumination at the target plane is especially required, along with a well-defined
energy- or power-density value. The uniformity of exposure duration is essential, but
to maintain exposure latitude, the uniformity of the irradiance incident on the wafer
is hugely important. Uniformity, U, for lithography is defined as the deviation of
irradiance around the mean irradiance [28]:

±U =
(Imax − Imin)

(Imax + Imin)
, (6.1)

where Imax is the maximum irradiance and Imin is the minimum irradiance. A beam
uniformity in the range of ± 5% is standard for laser machining applications and
±2% for photolithography [92]. This is measured with an ‘open field’ reticle that
has no features present. Transmission from the reticle will vary for different features
being printed.

The rectangular beam produced by most excimer lasers must usually be reshaped
to match the needs of the process. Because of the shape and intensity profile of the raw
excimer beam, these transformations cannot be made using the simple optical systems
used for lasers with well-behaved Gaussian beams. The most popular technique is
beam integration, which consists of mixing fractions of the input beam to smooth out
the intensity spikes [19], [25], [26], [93], [94]. This device implicitly assumes spatial
incoherence of the mixed beams.

A multi-aperture integrator system consists of two components: (a) a subaperture
array component consisting of one or more lenslet arrays which divides the beam into
an array of beamlets and applies a phase aberration to each beamlet, and (b) a beam
integrator or focusing component which overlaps the beamlets from each subaperture
at the target plane [95]. The amplitude of the irradiance arriving at the target plane is
a Fourier transform of the original wavefront aberrated by the lenslet array.

6.1.1 Imaging Homogenizers

Beam-folding homogenizers are designed on the principle that the source beam is di-
vided into subsections that are superimposed on top of one another. There are two
types of beam-folding homogenizers: imaging and non-imaging. Both types of homog-
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Figure 6.1: Concept of a non-imaging beam integrator to provide uniform beam in-
tensity. A single microlens array is used to divide the beam into subapertures which
are imaged using a spherical lens. Image source: [95]

Figure 6.2: Concept of an imaging beam integrator to provide uniform beam intensity.
Two identical microlens arrays are used. The first lenslet array divides the beam into
subapertures. Then the second lenslet array, along with the spherical lens, images the
subapertures onto the final image plane S. Source: [95]
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enizers use arrays of crossed cylindrical lenses or square spherical lenses to divide
the beam into beamlets. Square lens apertures generate a square, flat-top or top-hat
beam profile in the Fourier plane; circular microlenses will generate a circular flat-top
intensity profile. The beamlets are then passed through a spherical (Fourier) lens to be
overlapped at the homogenization plane. The intensity pattern in the homogenization
plane is related to the spatial frequency spectrum generated by the microlens array
or arrays prior to entering the Fourier lens. The difference between the two types of
homogenizers is that non-imaging homogenizers use a single lens array with a spher-
ical lens (Figure 6.1), imaging homogenizers use two lens arrays and a spherical lens
(Figure 6.2).

The beam propagation in an imaging homogenizer is based on the Köhler illumi-
nation system. In Köhler illumination the object is illuminated with a perfectly defo-
cused image of the source ensuring uniform illumination as any intensity unevenness
in the source is not seen.

Figure 6.3: Suss MicroOptics imaging homogenizer: Two microlens arrays LA1 and
LA2, on spherical Fourier lens FL. Image source: [92].

The choice of beam homogenizer depends on the light source and the desired applica-
tion; Dickey [28] suggests the Fresnel number is used as a guideline. Using the terms
shown in Figure 6.3, which represents the layout of the homogenizer in use in DIMO,
we can define the Fresnel Number (FN) as

FN =
pLADFT

4λ fFL
, (6.2)
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where pLA is the pitch of microlens array, DFT is the dimension of the flat-top intensity
profile in the homogenization plane, fFL is the focal length of the Fourier Lens, and
λ is the wavelength of the source. Higher Fresnel numbers give sharper edges and
smaller variations of the flat-top profile. Non-imaging homogenizers should have
FNs >10, or even FN>100 to obtain a good uniformity. Non-imaging homogenizers
are suitable for large area illumination, as the flat top dimension DFT is proportional
to the Fresnel Number FN. For small Fresnel numbers FN<10 or high uniformity flat
top requirements, the imaging homogenizer is the preferred solution.

Usually, imaging homogenizers consist of two identical lenslet arrays (same pitch
pLA and focal length fLA1 = fLA2). The divergence is controlled by the distance be-
tween the second lenslet array and the Fourier lens - as this distance, s increases,
the beam divergence increases. This arrangement is the classic fly’s eye condenser.
For imaging homogenizers the diameter of the individual beamlets at the second mi-
crolens array LA2 must be smaller than the lens pitch to avoid overfilling of the lens
aperture and the loss of light.

The imaging beam homogenization system that we will model here is based on a
system from Suss MicroOptics, and is pictured in Figure 6.3. It has been designed
for use with 248 nm Braggstar source in place in DIMO, and comprises two square
spherical lenslet arrays and a spherical Fourier lens, arranged as shown in Figure 6.3.
Inserting the specifications of this homogenizer into Equation 6.2, the Fresnel Number
(FN) can be calculated as follows:

FNSuss =
0.5 mm× 4.59 mm

4× 248 nm× 150 mm
= 15.423 (6.3)

The Fresnel Number is just above the threshold of 10, deeming it suitable for a non-
imaging integrator, but the high uniformity requirements of lithography (±2%) make
the imaging homogenizer a more suitable choice for this application. Prior to entering
the beam homogenization optics, the raw beam passes through a randomizing phase
plate (or rotating diffuser). The purpose of the rotating diffuser is to reduce the spa-
tial coherence by the addition of static aberration. The performance of a lenslet array
is generally improved by the additions of a randomizing aberration plate. If such a
randomizing phase plate is used, then only the dynamic effects in the laser will con-
tribute to further suppression of coherent artifacts, and the static (fixed) aberrations of
the laser do not matter and should not be included in the laser characterization [24].
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6.1.2 Modelling an Imaging Homogenizer

In Chapter 5, the Elementary Function Method was applied successfully to the 248 nm
Braggstar beam. A comparison between the measured beam intensity profile in both
axes of the beam and the sum of the shifted, squared, and weighted elementary func-
tions showed almost identical profiles. The next step in the beam model is to include
homogenization optics, or to mimic the effect of such optics in some way.

Figure 6.4: Special case of Multiple Beam Interference to imitate the effect of a lenslet
array. The aperture (slit) diameter is equal to the aperture separation.

As discussed in Section 6.1.1, a wavefront arriving at the first microlens array of an
imaging homogenizer is divided into an array of beamlets. The second microlens
array, along with the Fourier lens, images the complex amplitude of the incident
wavefront onto the image plane, where each beamlet is overlapped with a certain
magnification. The superposition of beamlets averages out any intensity fluctuations
in the incident wavefront if the beamlets are mutually incoherent; a greater number
of lenslets results in greater uniformity in the image plane. On a basic level, for light
of arbitrary coherence, this process may be compared to the phenomenon of Multiple
Beam Interference [37], [96]. Earlier, in Section 4.2.3, the theory behind the interference
pattern created by light incident on a non-redundant array was introduced. In the
double-slit case, the intensity at a point in the image plane is equal to the sum of the
intensities of the two beams multiplied by an interference term. If the source is spa-
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tially incoherent, the interference term is zero. If the source is partially coherent, the
interference term begins to grow, becoming more significant as the coherence of the
source increases. Here, we will approximate the effect of an imaging homogenizer
using a special case of multiple beam interference: the aperture (or “slit”) diameter
and aperture separation are the same, and are equal to the diameter of a single lenslet
(see Figure 6.4). With the exception of the beamlet corresponding to the centre lenslet
(on the optic axis), a phase shift, dependant on distance from the optic axis, is applied.
The beamlets are then added together. To test the method, the model was applied to
a purely coherent source (a point source positioned both on-axis and off-axis) and to
sources of decreasing coherence.

Figure 6.5: Scheme of a flys’ eye condenser with two identical microlens arrays. Image
source: [92].

Before proceeding with the model, we need to apply any necessary scaling changes.
To illustrate the source position and the optical path of a wavefront before it arrives at
the lenslet array, we refer to Figure 6.5. A wavefront leaving the source travels a dis-
tance fCL to the collimating lens, and then onwards to the first lenslet array. The effect
of the collimating lens can be modelled using a simple Fourier transform. However,
the distance fCL is important as it affects the subsequent scaling of the wavefront in
the frequency domain. The scaling can be calculated as follows:

y =
λ× fCL

x
(6.4)

where x is the width of the sampling window in the source plane, which is the product
of the number of samples taken and the pixel size (unit: m), y is the scaled pixel size, λ

is the wavelength of the source (248 nm), and fCL is the focal length of the collimating
lens. For example, a 2 µm pixel size in a source plane with 700001 sample points, and
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with fCL = 150 mm

y =
248 nm× 150 mm

700001× 2 µm
= 0.026 µm (6.5)

This difference in scaling between the initial wavefront leaving the source and the
wavefront (post Fourier transform) arriving at the first lenslet array is taken into ac-
count in the lenslet model. It is important to ensure the lenslets are filled by the
source illumination, e.g. by diverging the beam as shown in Figure 6.5. Also, in order
to apply the appropriate tilt to each wavefront segment in the model (as shown in
Figure 6.4), fFL was taken to be 150 mm.

The interference pattern in the image plane for a coherent point source on-axis is
given in Figure 6.6. The intensity distribution in the image plane is not uniform: the
coherent nature of the light source results in interference between the beamlets from
each aperture which manifests itself as a series of diffraction orders or Airy disks in
the image plane. Similarly, the intensity in the image plane for a coherent point source
positioned 2 µm off-axis is shown in Figure 6.7. In both cases (i.e. Figure 6.6 (a) and
Figure 6.7 (a)), an interference pattern, spanning a width equal to the diameter of one
lenslet (0.5 mm), is seen in the image plane of the Fourier lens. Zooming in on both
of these plots (i.e. Figures 6.6 and 6.7, plot (b)), the individual diffraction orders are
visible. For the point source on-axis (Figure 6.6), there is an Airy disk centered in
the image plane; the central peak of the airy disk is centered in the image plane. In
Figure 6.7, we see the effect of moving the point source just one pixel off-axis (i.e.
2 µm). As the point source moves off-axis, the diffraction orders shift. An extended
incoherent source should give a resultant intensity that is the sum of many such dis-
tributions, each displaced from each other. The results of Figures 6.6 and 6.7 show
that, with spatially coherent illumination, this “homogenizer” produces an extremely
non-homogeneous intensity, because of the process of interference.

To investigate the effect of decreased spatial coherence, the width of the source was
increased by adding more point sources (delta functions) either side of the central, on-
axis point source. Increasing the width of the source decreases the spatial coherence
of the beam combination process. In the first instance, one extra delta function is
placed either side of the on-axis point source, to create a source width of 3 pixels,
which corresponds to 6 µm (1 pixel = 2 µm). Each delta function is imaged separately,
and the intensity in the image plane is summed. The result of this test is given in
Figure 6.8 (b). The source width is continually increased by 2 pixels in each plot (c) -
(u) and again in Figure 6.9 (a) - (u). Each of these plots depict the effect of increasing
the width of the source: the interference effects in the image plane are gradually less-
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Figure 6.6: (a) Simulated intensity in the image plane of an imaging homogenizer
illuminated by a coherent point source on-axis, and (b) zoomed in central part of (a)
showing single airy disks of the diffraction orders.
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Figure 6.7: (a) Simulated intensity in the image plane of an imaging homogenizer
illuminated by a coherent point source off-axis, and (b) zoomed in central part of (a)
showing single airy disks of the diffraction orders. Moving the point source off-axis
by a single sampling point (0.019 µm) results in a shift in the diffraction orders, visible
particularly in (b).
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ened, corresponding to a decrease in spatial coherence. Comparing the result from
a coherent point source on-axis (shown again in Figure 6.8 (a)) to a source 3 pixels
wide (Figure 6.8 (b)), we see the diffraction orders (Airy disks) become broader as
the source width increases. The diffraction orders continue to widen with increasing
source width (Figure 6.8(c) - (m). In Figure 6.8 (m) we see the diffraction orders are at
their widest (with very little space between adjacent orders).

In Figure 6.8 (n), a “flip” occurs and the diffraction orders become narrow once
again. Once again the diffraction orders widen with increasing source width, un-
til reaching a maximum width (Figure 6.9 (f), and the orders become narrow once
again (Figure 6.9 (g)). This cycle continues as the source width is increased, but with
a noticeable decrease in amplitude of the diffraction orders each time. The spatial
coherence of the source is decreasing, and the intensity is gradually becoming more
uniform.

Zimmermann et. al. reported similar findings in their 2007 paper [92]. Assuming
each light source point with axial distance xsource forms a laterally shifted spot array
with a shift of ∆x = θin fFL = xsource fFL/ fCL, then “if the diameter Dsource of the light source
is such that the lateral shift ∆x of all light source points is just one period ΛFP of the spot array
with ΛFP = λ fFL/pLA, a smooth homogeneous intensity will be obtained in the focal plane
of lens FL (assuming all light source points emit identically). However, if the diameter of the
light source increases further there will be again high fluctuations of the intensity pattern.”.
Zimmermann et. al. present the following relations

Dsource

fCL
=

λ

pLA
(6.6)

for the case of smooth homogeneous intensity, and

Dsource

fCL
=

1.5λ

pLA
(6.7)

for high fluctuations. Eventually the source diameter becomes so large that the spot
arrays of the different light source points are shifted by many periods, and the in-
tensity is almost homogeneous even if the light source diameter changes by a few
percent.

In this Section, the method has been applied to a purely spatially coherent point
source, and to incoherent sources of increasing width. Physically, the intensity in the
image plane for each source seems reasonable. In the purely coherent case, the great-
est amount of interference is obtained. We see the effect of the light emerging from
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Figure 6.8: Simulated intensity in the image plane of an imaging homogenizer illumi-
nated by sources of increasing width. In (a), the source has a width of 1 pixel (2 µm),
in (b), the source width is 3 pixels (6 µm), in (c), the source width is 5 pixels (10 µm),
and so on in (d) - (u), with the source width increasing by 2 pixels each time. In (u),
the source width is 41 pixels, corresponding to 82 µm.
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Figure 6.9: Simulated intensity in the image plane of an imaging homogenizer illumi-
nated by sources of increasing width, and thus, decreasing spatial coherence. This is
a continuation of Figure 6.8. In (a) the source has a width of 43 pixels (86 µm). The
source width is increased in steps of 2 pixels (4 µm) in (b) - (u). The final width in (u)
is 83 pixels (166 µm).
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25 lenslets and interfering in the focal plane of the Fourier lens (Figure 6.6). Zoom-
ing in on this interference pattern enlarges the various diffraction orders (Airy disks).
Moving the coherent point source off-axis by a single pixel results in a shift of the
the diffraction orders (Figure 6.7), and as we expect, this shift is much less than the
width of a single airy disk. The effect of increasing the source width is to decrease
the interference effects, as seen in Figures 6.8 and 6.9. Most importantly we note that
the intensity in the image plane is highly non-uniform, thus showing that the beam
homogenizer does not work at all well with a coherent source. As the source width
is increased, and thus the spatial coherence of the source decreases, the intensity of
the source becomes more uniform. The next step is to apply the Elementary Func-
tion method to this imaging homogenizer approximation, where the delta functions
modelled here will be replaced by elementary functions.

6.2 The Elementary Function Method applied to an
Imaging Homogenizer

As in earlier stages of this study, the initial proof of concept of the method is per-
formed using a Gaussian Schell-model beam. The model is applied in a similar way
to the coherent case, except the delta functions are replaced by elementary functions.
Each shifted elementary function is propagated through the imaging homogenizer
using the special case of multiple beam interference, squared (to give the intensity)
and then weighted according to its position in the source. The weighted intensities
are then summed. The Elementary Function Method was tested in two ways: firstly
the coherence width (σg) is defined and is unchanged as the intensity width (σI) is
varied, secondly the coherence width is varied as the intensity width is fixed.

Figure 6.10 shows the simulated intensity in the image plane of an imaging homoge-
nizer illuminated by Gaussian Schell-model source of various widths. The coherence
width (σg) is fixed at 0.1 mm and the intensity width (σI) is set at 0.1 mm in Figure 6.10
(a) and increased gradually in plots (b) - (f). In each case, a greater number of ele-
mentary functions must be propagated to fully represent the source. In Figure 6.10
(a), the coherence width is equal to the intensity width, resulting in a highly spatially
coherent source. According to our sampling criterion, 13 elementary functions are
required to represent the source. As the width of the intensity distribution increases,
the degree of spatial coherence of the source decreases, and as a result, the fluctua-
tions in the intensity profile gradually decrease to produce a more uniform intensity
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Figure 6.10: Simulated intensity in the image plane of an imaging homogenizer il-
luminated by Gaussian Schell-model sources of increasing intensity width. In each
case, the coherence width is the same (σg = 0.1 mm) and the intensity width (σI) is
varied. (a) σI = 0.1 mm, requiring 13 elementary functions, (b) σI = 0.25 mm, requir-
ing 29 elementary functions, (c) σI = 0.5 mm, requiring 57 elementary functions, (d)
σI = 0.75 mm, requiring 87 elementary functions, (e) σI = 1.0 mm, requiring 115 ele-
mentary functions, and (f) σI = 2.25 mm, requiring 257 elementary functions..
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distribution. In Figure 6.10 (f), σg = 2.25 mm, requiring 257 elementary functions to
be propagated. In this case, the area of the coherence distribution occupies just 4 % of
the intensity profile, producing a source with a low degree of spatial coherence. Thus,
the interference effects in the image plane have decreased considerably. This trend is
similar to that observed in Figures 6.8 and 6.9 for an increasing source width.

In Figure 6.11, the intensity in the image plane of an imaging homogenizer is
shown for Gaussian Schell-model sources of fixed intensity width (σI = 0.1 mm) and
various coherence widths (σg). In effect, the degree of coherence of the source is de-
creasing in each step (a) - (f) in Figure 6.11 as the width of the coherence distribution
becomes increasingly small relative to the width of the intensity profile of the source.
We observe the same gradual decrease in interference effects as in Figure 6.10. Fig-
ure 6.10 (a) and Figure 6.11 (a) are the same: in each case σI = 0.1 mm and σg = 0.1 mm,
and 13 elementary functions are required. From this point, in Figure 6.11 (b) - (f), the
coherence width σg is decreased, thus decreasing the coherence of the source and in-
creasing the number of elementary functions to be propagated.

From these two Figures it is clear that the relationship between the coherence and
intensity widths is key to the effects (if any) seen in the image plane of the imaging ho-
mogenizer. The number of elementary functions required gives a good indication of
the degree of spatial coherence of the source, and can be a useful predictor of the out-
come of imaging such a source through a homogenizer. Furthermore, in both cases,
the non-uniformity in the intensity profile in the image plane of the homogenizer as
a result of the coherence properties of the source is not trivial.

The next step is to apply the model to the data gathered from the 248 nm excimer
source. We will do this in three stages. Firstly, we will examine the effect produced
when the imaging homogenizer is illuminated by a spatially incoherent source with
the same intensity width as the excimer beam. Secondly, we will look at a Gaussian
Schell-model source with the same measured intensity and coherence values as the
Braggstar excimer beam. Finally, we will model the effect of illuminating the imaging
homogenizer with the real excimer beam.

Figure 6.12 shows the simulated intensity in the image plane of an imaging homog-
enizer illuminated by a spatially incoherent source with the same intensity width as
(a) the short axis and (b) the long axis of the Braggstar 248 nm beam. The intensity
width in (a) is 3.27 mm, corresponding to a width of 1551 pixels, and in (b) the in-
tensity width is 8.964 mm, corresponding to a width of 4247 pixels. These widths are
large, particulary in comparison to the source widths examined in Section 6.1.2, and
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Figure 6.11: Simulated intensity in the image plane of an imaging homogenizer il-
luminated by Gaussian Schell-model sources of increasing intensity width. In each
case, the intensity width is the same (σI = 0.1 mm) and the coherence width (σg) is
varied. (a) σg = 0.1 mm, requiring 13 elementary functions, (b) σg = 0.05 mm, requir-
ing 23 elementary functions, (c) σg = 0.025 mm, requiring 47 elementary functions, (d)
σg = 0.01 mm, requiring 115 elementary functions, (e) σg = 0.005 mm, requiring 229
elementary functions, and (f) σg = 0.003 mm, requiring 287 elementary functions.
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Figure 6.12: Simulated intensity in the image plane of an imaging homogenizer illu-
minated by an incoherent source with the same intensity width as the (a) short axis
and (b) long axis 248 nm beam. The intensity width in (a) is 3.27 mm and in (b) the
intensity width is 8.964 mm.
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in both cases, the fluctuations in the intensity profile are very low, as we would expect
to see from a spatially incoherent source.
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Figure 6.13: Simulated intensity in the image plane of an imaging homogenizer illu-
minated by a Gaussian Schell-model source with the same intensity and coherence
widths as the (a) short axis and (b) long axis 248 nm beam. The intensity and coher-
ence widths in (a) are 3.27 mm and 0.67 mm respectively, and in (b) the intensity and
coherence widths are 8.946 mm and 0.214 mm respectively.

Next, the intensity and spatial coherence data for the 248 nm beam is applied to
a Gaussian Schell-model beam, which is modelled using the Elementary Function
Method. The intensity widths (σI) and coherence widths (σg) are assumed to refer to
the FWHM’s of Gaussian distributions, and the elementary function and sampling
distribution is calculated as before. Figure 6.13 shows the intensity in the image plane
for the 248 nm beam assuming illumination along (a) the short axis of the beam, and
(b) the long axis of the beam. The intensity and coherence widths in (a) are 3.27 mm
and 0.67 mm respectively, resulting in 57 elementary functions to be propagated, and
in (b) the intensity and coherence widths are 8.946 mm and 0.214 mm respectively,
requiring 479 elementary functions. In Figure 6.13 (a), the fluctuations in the image
plane are considerable and the intensity profile is highly non-uniform. Figure 6.13 (b)
shows a smoother intensity profile in the image plane, due to the much lower level of
spatial coherence along this axis. This result is reasonable considering the coherence
measurements for this source. Along the short axis of the beam, the width of the
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Figure 6.14: Simulated intensity in the image plane of an imaging homogenizer il-
luminated by the (a) short axis and (b) long axis of the 248 nm excimer source. The
intensity and coherence widths in (a) are 3.27 mm and 0.67 mm respectively, and in (b)
the intensity and coherence widths are 8.946 mm and 0.214 mm respectively.
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coherence distribution corresponds to 20 % of the width of the intensity profile of the
source; along the long axis of the beam, the coherence distribution covers just over
2 %.

The final part of this study involves the application of the homogenizer model to
the real 248 nm source data using the Elementary Function Method. Figure 6.14 shows
the simulated intensity in the image plane of an imaging homogenizer illuminated
by the partially coherent excimer beam. As in Figure 6.13, a pronounced interference
effect is seen when the homogenizer is illuminated by the short axis of the beam. The
long axis of the excimer beam has a much lower degree of spatial coherence and thus
the intensity profile produced by the imaging homogenizer is much smoother. It is
clear from both Figure 6.13 and 6.14 that the use of an imaging homogenizer with a
source with the level of spatial coherence present in the short axis of the beam does
not smooth the final intensity (as we showed earlier for the fully coherent source).
The spatial coherence of the source manifests itself in dramatic interference effects in
the image plane of the homogenizer, and thus the source is not ideal for applications
involving high resolution imaging. The imaging beam homogenizer is really only
suitable for use with spatially incoherent sources, and the coherence properties of
this excimer beam will produce dramatic interference effects in the image plane of
the homogenizer.
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Conclusions

7.1 Summary of Thesis

Despite recent advancements in the technology of lithographic imaging, excimer lasers
have maintained a popularity in the lithography field due to their low spatial coher-
ence, high brightness, and cost efficiency. Excimer lasers are spatially partially co-
herent sources and, as such, are complex to model. The cross-spectral density - the
quantity used to describe a partially coherent source in terms of its intensity distri-
bution and its degree of coherence - is difficult to propagate mathematically. The
propagation calculations are tedious and complex, and place large demands on com-
puter memory. The purpose of this work was to develop a simple model of a partially
coherent source. This model can then be applied to an imaging beam homogenizer,
an example of a key element of modern lithographic systems which require high level
beam uniformity.

The work in this thesis will be discussed under two headings: experimental and sim-
ulation.

7.1.1 Experimental Results

The standard method for measuring spatial coherence of a light field is based on the
double-aperture interferometer (the Young’s slits experiment). Spatial coherence data
is gathered through lateral movement of the double-aperture mask across the beam,
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along with variation of aperture separation. However, this method requires several
measurements across the beam and several aperture separations to get a full range of
values across the coherence distribution of the source. The method used here is based
on the non-redundant array: an array of points on a regular lattice such that the vec-
tor difference between any two points in the array is unique. The array is illuminated
by the partially coherent source, and the spatial coherence is found from the Fourier
spectrum of the resulting interferogram. In our mask design, one aperture separa-
tion occurred twice (i.e. a redundant frequency separation), which was a necessary
compromise to ensure sufficient data was gathered within the coherence length of the
source. This measurement of a redundant separation did not contribute to the final
coherence measurements, only the unique aperture separations produced useful data.
For each measurement, the array of apertures was placed within the area of highest
intensity in the beam. This area was chosen as, in general, any work carried out using
the raw beam would be centred on this area. While the spatial coherence measure-
ments were in good agreement with those provided by the laser manufacturer, more
data sets including other areas of the beam could produce a more in-depth and accu-
rate representation of the spatial coherence across the beam. A redesign of the pinhole
array used in the measurements to remove the one degree of redundancy would make
the data gathering more efficient, and eliminate the need to reject any data, but could
reduce the amount of useful measurements made within the coherence length of the
source.

Recently, González and Mejía have published results based on the non-redundant
array method previously published by them in 2007 [85] but extended to two dimen-
sions [97]. Their design features a two dimensional grid of apertures, and is used to
measure the spatial coherence of a laboratory-generated partially coherence source
and a laser diode source. Future work in this area could involve simultaneous two-
dimensional measurement of the spatial coherence of an excimer source.

7.1.2 Simulation Results

The Elementary Function Method

The Elementary Function Method, first introduced by Wald et al in 2005 [64], and de-
veloped further by Burvall et al in 2009 [65], was applied numerically to the 248 nm ex-
cimer source. Existing numerical methods to propagate partially coherent light have
proven costly with respect to computer memory and time. Initially, before applying
the method to the excimer beam, the model was applied numerically to a Gaussian
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Schell-model beam. This test beam was a case study in [65], where the model was
applied analytically to the partially coherent source. In Chapter 5, we presented the
successful numerical application of the method to a Gaussian Schell beam. A compar-
ison between the analytical and numerical results provided an initial proof of concept
of the Elementary Function Method.

While the Elementary Function Method provides a way to reduce the complexity of
propagation calculations for a spatially partially coherent source, some assumptions
and approximations are necessary. The first assumption was that the initial cross-
spectral density was assumed to be real. This puts limitations on the applicability,
but it could be fulfilled for most beams. Divergent or convergent beams will have
complex cross-spectral densities but can be modelled as part of the impulse response
function instead. In terms of a lithographic system model, this assumption is reason-
able as the beam divergence is low in excimer beams, and it is usually collimated by
the illumination optics. Secondly, it was assumed that the elementary function f (r)
is real and even. For real and even cross-spectral densities this should not cause any
problems. The third assumption was that f̂ 2(u) has no zeros. This may be the most
restricting assumption, limiting the method to cross-spectral densities made up of
smooth envelope functions such as Gaussians or super-Gaussians. For the case of the
sources modelled in this project these assumptions are not debilitating. Other source
types may stretch the boundaries of the method, but testing this was beyond the scope
of this study. A standard test to generate the intensity in the image of an opaque edge
produced results in the order of that expected. The point spread function of the sys-
tem was such that the partially coherent source produced an image consistent with
that expected from a spatially coherent source. However, a model of a partially coher-
ent test beam (Gaussian Schell-Model beam) showed that as the spatial coherence of
the source decreased, the intensity in the image of an opaque edge moved towards the
expected partially coherent result. We can conclude that the model developed using
the Elementary Function Method has provided a good approximation of a partially
coherent excimer source, but that sampling issues are still not fully understood.

Beam Homogenization

The second part of the simulation work involved development of a model of an imag-
ing homogenizer. Homogenization optics are used in lithographic systems due to the
uneven distribution of intensity in the raw excimer beam and the need for high level
uniformity in lithographic exposures. Beam homogenization by means of integration
involves splitting the input beam into subapertures. These subapertures are focused
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by microlenses in a common focal plane. The spherical waves originating from the
focal spots are re-collimated by a primary lens and overlapped in the target plane. An
imaging homogenizer consists of two microlens arrays (identical, in this case) and a
Fourier lens. The incident wavefront is divided into beamlets by the first microlens
array, and the second lens array, along with the Fourier lens, images the beamlets onto
the image plane of the system where they are overlapped. This process was simpli-
fied using a special case of multiple beam interference, where the aperture size and
separation are the same, and are set equal to the pitch of the lenslets.

This method provided a good approximation of the physical process taking place in
a beam homogenizing system. A coherent point source on-axis was imaged through
the system, and a high level of interference was observed in the image plane, consis-
tent with what is expected from a coherence source. Increasing the width of the source
led to a decrease in interference effects consistent with decreasing spatial coherence,
which is also physically realistic. The Elementary Function Method was applied to the
homogenizer model in two different ways. By keeping the coherence width σG fixed
and slowly increasing the intensity width σI , the degree of coherence of the source
was effectively decreased, and the interference effects in the image plane of the ho-
mogenizer gradually decreased to produce a more uniform intensity profile. Similar
interference effects were observed when the intensity width of the source was fixed,
and the coherence width was slowly decreased. The relationship between the FWHM
of the coherence distribution and the intensity distribution is key to predicting the
level of fluctuations in the intensity profile post-homogenization.

The spatial coherence data and the intensity data from the 248 nm beam were tested
in three different ways. Firstly, a source (filled with delta functions) was defined with
a width corresponding to the intensity width of the excimer source along the x- and
y- axes. The simulated intensity in the image plane of the Fourier lens was quite
uniform, with only slight fluctuations visible in the intensity distribution (see Fig-
ure 6.12). Secondly, the model was applied to a Gaussian Schell-model beam with
the same intensity and coherence widths as the 248 nm beam. The fluctuations in
the intensity distribution in the homogenizer image plane were considerably large
for the short, and more coherent, axis of the beam. A more effective smoothing was
seen along the less coherent long axis. Finally, the model was applied to the real
248 nm excimer beam. The result was similar to the Gaussian Schell-model case: the
coherence properties along the short axis of the beam produce dramatic interference
effects in the image plane of the homogenizer, while a smoother intensity profile is
produced when the homogenizer is illuminated with the long axis of the beam. From
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Chapter 7. Conclusions

these simulations it is clear that the coherence properties of the excimer beam give
rise to undesirable interference effects in the image plane of an imaging homogenizer,
which, without further averaging, would greatly hinder high resolution circuit print-
ing.

While the Elementary Function Method has proven to be a simple and efficient tool
in the task of partially coherent light propagation, it is possibly not as useful when
applied to an imaging homogenizer model. Ideally, an imaging homogenizer should
be used on a completely incoherent source; even a small level of spatial coherence in
the source produces significant interference effects in the homogenizer image plane.
The partially coherent excimer source modelled here has quite a large degree of coher-
ence, and use of the Elementary Function Method to propagate this source through
the imaging homogenizer is more complicated than necessary. An estimate of the
interference effects one can expect at the output of an imaging homogenizer could
be provided equally well by propagating a series of delta functions through the sys-
tem. However, the Elementary Function Method could prove useful in other areas of
imaging with partially spatially coherent sources.
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