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Abstract

The optical resolution of ground-based astronomical telescopes is in principle limited by
the atmospheric turbulence. Adaptive optics is a technique that enables high-resolution
imaging from the ground by compensating in real-time for the phase perturbations
introduced by atmospheric turbulence. One of the major limitations of single-conjugate
adaptive optics (SCAO) is the fact that compensation is only attainable in a small field
of view due to anisoplanatism. Multi-conjugate adaptive optics (MCAO) is a technique
that was conceived to overcome this limitation. This is achieved by the use of several
wavefront sensors (WFSs) to probe the atmospheric volume in different directions,
and several deformable mirrors (DMs) optically conjugated at different altitudes to
compensate for the phase perturbations introduced by the atmospheric volume.

Spatial reconstruction in MCAO refers to the problem of estimating from the WFSs
measurements the three-dimensional distribution of the atmospheric-turbulence phase
perturbations. We present a review of the deterministic and the statistical estima-
tion methods to solve the reconstruction problem in MCAO by describing the prob-
lem within the formalism of inverse problems. Then, we have used this formalism to
study and fully characterize the propagation of the remaining error —also known as
generalized aliasing— in MCAO. We have also studied the application of modal gain
optimization in MCAO, and we have shown that the generalized aliasing in MCAO
poses a shortcoming to the generalization of this control technique to MCAO.

In the framework of the Multi-conjugate Adaptive optics Demonstrator (MAD) project,
we have participated in the experimental validation of the MCAO concept in the lab-
oratory. We present the high-flux optimization of the MAD system and a comparison
of simulation and experimental results.
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1.1.4 von Kármán turbulence model . . . . . . . . . . . . . . . . . . . 37
1.1.5 Modal expansion of the phase perturbation . . . . . . . . . . . . 39
1.1.6 Temporal characterization . . . . . . . . . . . . . . . . . . . . . . 40

1.1.6.1 Temporal power spectra of Zernike coefficients . . . . . 42
1.1.7 Atmospheric turbulence simulation . . . . . . . . . . . . . . . . . 42

1.2 Adaptive optics systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
1.2.1 Deformable mirrors . . . . . . . . . . . . . . . . . . . . . . . . . . 44

1.2.1.1 DM linear model . . . . . . . . . . . . . . . . . . . . . . 45
1.2.1.2 The mirror space . . . . . . . . . . . . . . . . . . . . . . 46
1.2.1.3 Fitting by a DM . . . . . . . . . . . . . . . . . . . . . . 47

1.2.2 Wavefront sensors . . . . . . . . . . . . . . . . . . . . . . . . . . 48
1.2.2.1 Shack-Hartmann wavefront sensor . . . . . . . . . . . . 49

1.2.3 Wavefront sensing simulation . . . . . . . . . . . . . . . . . . . . 51
1.2.3.1 Shack-Hartmann WFS . . . . . . . . . . . . . . . . . . 51

9



10 CONTENTS

1.2.3.2 Idealized WFS . . . . . . . . . . . . . . . . . . . . . . . 52

1.2.4 Calibration of an AO system . . . . . . . . . . . . . . . . . . . . 53

1.2.4.1 Interaction matrix . . . . . . . . . . . . . . . . . . . . . 53

1.2.4.2 Non-common path aberrations . . . . . . . . . . . . . . 53

1.2.5 The controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

1.2.6 Performance evaluation . . . . . . . . . . . . . . . . . . . . . . . 55

1.2.7 Single-conjugate adaptive optics (SCAO) . . . . . . . . . . . . . 57

1.2.7.1 SCAO-corrected PSF and OTF . . . . . . . . . . . . . . 58

1.2.7.2 Anisoplanatism . . . . . . . . . . . . . . . . . . . . . . . 60

1.2.7.3 Limiting magnitude, sky coverage and laser guide stars 61

1.2.8 Multi-conjugate adaptive optics (MCAO) . . . . . . . . . . . . . 62

1.2.8.1 Star-oriented wavefront sensing . . . . . . . . . . . . . . 63

1.2.8.2 Layer-oriented wavefront sensing . . . . . . . . . . . . . 64

1.2.8.3 Current projects in MCAO . . . . . . . . . . . . . . . . 65

1.2.9 Ground-layer adaptive optics (GLAO) . . . . . . . . . . . . . . . 66

2 Wavefront reconstruction in MCAO 69

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

2.2 The Direct Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

2.2.1 Matrix formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 71

2.2.2 Approximate direct problem . . . . . . . . . . . . . . . . . . . . . 74

2.2.3 Example case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

2.3 The Inverse Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

2.3.1 Existence and uniqueness of solution . . . . . . . . . . . . . . . . 80

2.3.1.1 Least-squares solution . . . . . . . . . . . . . . . . . . . 80

2.3.1.2 Singular value decomposition . . . . . . . . . . . . . . . 81

2.3.1.3 Minimum-norm least-squares solution . . . . . . . . . . 81

2.3.1.4 Unseen modes in adaptive optics . . . . . . . . . . . . . 83

2.3.2 Stability of solution . . . . . . . . . . . . . . . . . . . . . . . . . 83

2.3.2.1 Badly-seen modes in adaptive optics . . . . . . . . . . . 85

2.3.2.2 Conditioning of H . . . . . . . . . . . . . . . . . . . . . 85

2.3.2.3 Truncated least-squares solution . . . . . . . . . . . . . 89

2.4 Evaluation of the reconstruction error . . . . . . . . . . . . . . . . . . . 91

2.4.1 Variance distribution in eigenspace . . . . . . . . . . . . . . . . . 93

2.4.2 Global reconstruction error . . . . . . . . . . . . . . . . . . . . . 94

2.4.3 Reconstruction error for the TLS reconstructor . . . . . . . . . . 95



CONTENTS 11

2.4.4 Example case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
2.4.5 Field-of-view dependence . . . . . . . . . . . . . . . . . . . . . . 99
2.4.6 Propagation of remaining error: numerical validation . . . . . . . 101

2.5 Statistical estimation method . . . . . . . . . . . . . . . . . . . . . . . . 103
2.5.1 Evaluation of the improvement in conditioning . . . . . . . . . . 105
2.5.2 Reconstruction error for the MMSE reconstructor . . . . . . . . 106

2.6 Minimum-variance reconstructor . . . . . . . . . . . . . . . . . . . . . . 108
2.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

3 Modal gain optimization for MCAO 113

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
3.2 Spatio-temporal MCAO control system model . . . . . . . . . . . . . . . 114

3.2.1 Deformable mirrors . . . . . . . . . . . . . . . . . . . . . . . . . . 115
3.2.2 Wavefront sensors . . . . . . . . . . . . . . . . . . . . . . . . . . 116
3.2.3 Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
3.2.4 DAC and HVA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
3.2.5 Feedback equation and coupling . . . . . . . . . . . . . . . . . . 119

3.3 Modal Control for MCAO . . . . . . . . . . . . . . . . . . . . . . . . . . 120
3.3.1 Decoupling in the MCAO system space . . . . . . . . . . . . . . 121
3.3.2 System Transfer Functions . . . . . . . . . . . . . . . . . . . . . 123

3.4 Optimized modal control for MCAO . . . . . . . . . . . . . . . . . . . . 125
3.4.1 Case study: simulation parameters . . . . . . . . . . . . . . . . . 127

3.5 Gendron method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
3.5.1 Temporal power spectra . . . . . . . . . . . . . . . . . . . . . . . 129
3.5.2 System transfer functions . . . . . . . . . . . . . . . . . . . . . . 130
3.5.3 Optimized modal gains . . . . . . . . . . . . . . . . . . . . . . . 131
3.5.4 TLS reconstructor versus MOMGI . . . . . . . . . . . . . . . . . 134

3.6 Dessenne method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
3.6.1 The SCAO case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
3.6.2 The MCAO case . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
3.6.3 Temporal power spectra . . . . . . . . . . . . . . . . . . . . . . . 138
3.6.4 Optimized modal gains . . . . . . . . . . . . . . . . . . . . . . . 139

3.7 Discussion: practical implementation . . . . . . . . . . . . . . . . . . . . 140

4 Validation of MCAO with the MAD system 143

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
4.1.1 Overview of the MAD system . . . . . . . . . . . . . . . . . . . . 144



12 CONTENTS

4.2 MAD system characterization . . . . . . . . . . . . . . . . . . . . . . . . 145

4.2.1 Shack-Hartmann WFSs . . . . . . . . . . . . . . . . . . . . . . . 146

4.2.1.1 Sampling characteristics . . . . . . . . . . . . . . . . . . 146

4.2.1.2 Slopes computation . . . . . . . . . . . . . . . . . . . . 146

4.2.1.3 WFS simulation model . . . . . . . . . . . . . . . . . . 147

4.2.1.4 Linearity characterization . . . . . . . . . . . . . . . . . 148

4.2.1.5 Measurement noise . . . . . . . . . . . . . . . . . . . . 149

4.2.1.6 Noise covariance matrix . . . . . . . . . . . . . . . . . . 152

4.2.2 Deformable mirrors . . . . . . . . . . . . . . . . . . . . . . . . . . 153

4.2.2.1 Influence functions . . . . . . . . . . . . . . . . . . . . . 153

4.2.2.2 The mirror space . . . . . . . . . . . . . . . . . . . . . . 155

4.2.2.3 Projection matrices for Zernikes . . . . . . . . . . . . . 156

4.2.3 Real-time computer . . . . . . . . . . . . . . . . . . . . . . . . . 158

4.2.3.1 Temporal controller . . . . . . . . . . . . . . . . . . . . 160

4.2.3.2 Stability constraints . . . . . . . . . . . . . . . . . . . . 161

4.2.3.3 Rejection transfer functions . . . . . . . . . . . . . . . . 161

4.2.3.4 Reconstruction of open-loop data . . . . . . . . . . . . 164

4.2.4 Atmospheric turbulence generator . . . . . . . . . . . . . . . . . 166

4.2.4.1 FWHM v. L0 . . . . . . . . . . . . . . . . . . . . . . . 168

4.2.4.2 Phase screens characterization . . . . . . . . . . . . . . 170

4.2.4.3 Simulation of MAPS turbulence profile . . . . . . . . . 173

4.2.4.4 Isoplanatic angle . . . . . . . . . . . . . . . . . . . . . . 176

4.2.5 Flux level characterization . . . . . . . . . . . . . . . . . . . . . . 177

4.3 Simulation studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

4.3.1 SCAO mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

4.3.1.1 SR v. control law parameters . . . . . . . . . . . . . . . 178

4.3.1.2 SR v. atmospheric variations . . . . . . . . . . . . . . . 180

4.3.1.3 SR v. star magnitude . . . . . . . . . . . . . . . . . . . 181

4.3.2 GLAO mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

4.3.2.1 Computation of the GLAO reconstruction matrix . . . 184

4.3.2.2 GLAO performance v. filtered modes . . . . . . . . . . 187

4.3.2.3 GLAO performance v. PI gains . . . . . . . . . . . . . 189

4.3.2.4 GLAO contour plots . . . . . . . . . . . . . . . . . . . . 189

4.3.3 MCAO mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

4.3.3.1 MCAO performance v. filtered modes . . . . . . . . . . 192

4.3.3.2 MCAO performance v. PI gains . . . . . . . . . . . . . 197



CONTENTS 13

4.3.3.3 MCAO contour plots . . . . . . . . . . . . . . . . . . . 197
4.4 Opto-geometrical calibration . . . . . . . . . . . . . . . . . . . . . . . . 200
4.5 Experimental v. simulation results . . . . . . . . . . . . . . . . . . . . . 203

4.5.1 Experimental Strehl ratio computation . . . . . . . . . . . . . . . 204
4.5.1.1 Strehl ratio normalization . . . . . . . . . . . . . . . . . 206
4.5.1.2 Strehl ratio estimation . . . . . . . . . . . . . . . . . . 206

4.5.2 Experimental gain in ensquared energy computation . . . . . . . 206
4.5.3 SCAO mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
4.5.4 GLAO mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
4.5.5 MCAO mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
4.5.6 SCAO, GLAO, MCAO comparison . . . . . . . . . . . . . . . . . 215

4.6 Experiment with a synthetic reconstructor . . . . . . . . . . . . . . . . . 217
4.6.1 Comparison in performance . . . . . . . . . . . . . . . . . . . . . 218

4.7 Perspectives on advanced control laws . . . . . . . . . . . . . . . . . . . 222
4.7.1 MMSE reconstructor + temporal controller . . . . . . . . . . . . 223
4.7.2 Pseudo-open loop control law . . . . . . . . . . . . . . . . . . . . 225
4.7.3 Linear Quadratic Gaussian (LQG) control . . . . . . . . . . . . . 226

Summary and conclusions 229

Bibliography 232



14



List of Figures

1.1 C2
n(h) profiles from Paranal Observatory obtained with meteorological

balloons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.2 Comparison of the diffraction-limited, short-exposure, and long-exposure
images at λ = 2.2 µm of a point-like astronomical object produced by an
8-m telescope. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

1.3 Comparison of the diffraction-limited, short-exposure, and long-exposure
OTFs at λ = 2.2µm of a point-like astronomical object produced by an
8-m telescope. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

1.4 Structure function of the phase fluctuations for Kolmogorov turbulence
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Introduction

The optical resolution of ground-based astronomical telescopes is limited by the pertur-
bations introduced by the atmospheric turbulence. Adaptive optics (AO) is a technol-
ogy that was developed to enable high-resolution imaging from the ground. Although
the concept of adaptive optics compensation dates back to the 1950’s [9], it was not
demonstrated on the sky for astronomical applications until 1989 [129]. The first gen-
eration of AO systems were of the single-conjugate kind. A single-conjugate adaptive
optics (SCAO) system comprises a single deformable mirror (DM) to compensate in
real-time for the phase perturbations introduced by the atmospheric turbulence, and a
single wavefront sensor (WFS) to measure the phase perturbation residuals after cor-
rection by the DM that result in a given direction in the sky where a reference source
–or guide star (GS)– is located. Then, from the perspective of control system theory,
an AO system is nothing but a multi-variable feedback control system.

At present, most major astronomical telescopes have been equipped with SCAO
systems that have effectively allowed to reach a near-diffraction-limited resolution at
infrared wavelengths [114]. However, one of the major limitations of SCAO systems is
that the atmospheric turbulence compensation is only attainable in a very small field of
view (a few tens of arcseconds in the near-infrared) due to the anisoplanatism effect [39].
This effect is related to the fact that the atmospheric turbulence is distributed in al-
titude. The concept of multi-conjugate adaptive optics (MCAO) was then proposed
to overcome this limitation [26, 11]. An MCAO system comprises several deformable
mirrors (DMs) conjugated at different altitudes to compensate for the phase perturba-
tions introduced by the atmospheric volume, and several wavefront sensors (WFSs) to
probe the atmospheric volume in different directions using several guide stars (GSs).
Theoretical studies based on analytical formulations and numerical simulations have
shown that MCAO systems comprising 2 to 3 DMs and 3 to 5 WFSs would be ca-
pable of providing a near-diffraction-limited resolution in a large field of view (1 to 2
arcminutes in the near-infrared) on an 8/10 m-class telescope [46, 146, 80].
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In this work, we will study the topics of spatial reconstruction and temporal control
in MCAO systems. Spatial reconstruction in MCAO refers to the problem of estimating
from the WFSs measurements the three-dimensional distribution of the atmospheric-
turbulence phase perturbations. On the other hand, temporal control in MCAO refers
to the problem of how to determine the command signals that drive the DMs in order
to compensate in real-time for the atmospheric volume —perhaps also optimizing the
correction in a particular field-of-view (FoV) of interest— and ensuring the temporal
stability of the control system.

The problem of spatial reconstruction in MCAO can be rigorously studied within
the formalism of (linear) inverse problems [62]. Within this formalism, the reconstruc-
tion process can be formulated with a simple vector-matrix multiply ϕtur = Rs, in
which ϕtur is a vector representing the atmospheric turbulence volume, s is a vector
containing the WFSs measurements, and R is a matrix known as the MCAO recon-
struction matrix. The application of both deterministic (i.e. following a least-squares
approach) and statistical (i.e. following a minimum mean-square error or a maximum
a-posteriori approach) methods to derive the MCAO reconstruction matrix has been
already studied by several authors [69, 43, 47]. Thus, it has been shown that the sta-
tistical methods lead to a better reconstruction thanks to the statistical priors on the
atmospheric turbulence and the WFSs measurement noise that regularize the inversion
process.

In chapter 2 we will study the problem of wavefront reconstruction in MCAO. In
particular, we will thoroughly study the generalized aliasing in MCAO, which has been
already identified as one of the limitations in MCAO reconstruction [123], but that
has not been fully characterized in the past. Thus, we will propose in chapter 2 a
full characterization of the generalized aliasing —also known as the propagation of the
remaining error— in MCAO based on analytical formulations and numerical simula-
tions. We will study how this source of error is propagated through a least-squares and
a minimum mean-square error MCAO reconstruction matrix.

In chapter 3 we will study the problem of temporal control in MCAO systems. In
particular, we will study the generalization to MCAO of one of the control techniques
that has been successfully implemented in several SCAO systems, namely, the modal
gain optimization [55, 31]. We will show that the practical implementation of modal
gain optimization in MCAO is seriously limited by the generalized aliasing, which —as
opposed to the SCAO case— cannot be neglected in the computation of the optimized
modal gains for MCAO. We will support our studies with both analytical formulations
and numerical simulations.
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The numerical simulation results presented in this work were obtained with a simula-
tion tool implemented in the IDL language developed during my internship at ONERA.
The simulation tool was developed in collaboration with Cyril Petit —PhD student at
ONERA—, and with the contributions of other colleagues since the simulation tool was
built on a rich library of AO routines already existing at ONERA.

As part of my PhD thesis, I had the opportunity to participate in the experimental
validation of MCAO in the laboratory with the Multi-conjugate Adaptive optics Demon-
strator (MAD) system developed by the European Southern Observatory (ESO) [95]. I
developed a simulation tool in order to accurately match the characteristics of the MAD
system and study the performance optimization under high-flux conditions. In chap-
ter 4 we will present a comparison of simulation and experimental results obtained with
the MAD system. The reconstruction and control law implemented in the MAD system
were a simple least-squares reconstruction matrix and a two-parameter temporal con-
troller. The experimental results obtained in the laboratory are, to our knowledge, the
first experimental results to validate under realistic conditions the concept of MCAO.
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Chapter 1

Atmospheric turbulence and

adaptive optics

In the first part of this chapter we will review the general characteristics of the atmo-
spheric turbulence and its effects on the imaging resolution of ground-based astronomi-
cal telescopes. In the second part of this chapter we will review the generalities of adap-
tive optics (AO) systems and introduce the different configurations of single-conjugate
adaptive optics (SCAO), ground-layer adaptive optics (GLAO), and multi-conjugate
adaptive optics (MCAO). We will also introduce the mathematical models of the AO
system components that we will use throughout this work.

1.1 Atmospheric turbulence

Air masses are always in motion mainly due to the solar heating of the Earth’s sur-
face that causes convection currents. The air flow can be either laminar (i.e. uniform
and regular) or turbulent (i.e. with random subflows). The Reynolds number is a di-
mensionless parameter that gives the conditions under which a laminar flow becomes
turbulent. It is defined as the ratio of the inertial forces to the viscous forces within
the fluid, and it can be expressed as:

Re ≡ inertial forces
viscous forces

=
V l

kv
(1.1)

where V is a characteristic velocity, l is a characteristic size also known as the length
scale, and kv is the kinematic viscosity of the fluid. If Re is larger than a critical value
Rec that depends only on the geometry of the flow (e.g. the geography), then the fluid
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will move turbulently. The kinematic viscosity of atmospheric air is kv = 15·10−6 m2s−1.
Considering typical characteristic velocities (V > 1 m/s) and length scales l of several
meters to kilometers results in Reynolds numbers larger than Re > 106. These numbers
are sufficiently large to ensure the prevalence of atmospheric turbulence [104].

Atmospheric turbulence —as any other turbulent flow— is characterized by random
vortices also known as turbulent eddies [142]. The velocity V at each point in space
(and at each instant) can be represented by a random variable whose spatial (and
temporal) statistics need to be characterized. Random fluctuations of the velocity field
V are also accompanied by random fluctuations of other variables of interest such as
the temperature T , the humidity %, or —-most importantly for imaging studies— the
refractive index N .

1.1.1 Statistical descriptions

The second-order statistics of the fluctuations between two points in space (or two
instants in time) of any variable of interest x(r, t) —e.g. velocity, temperature, or
refractive index— are characterized by correlation functions or structure functions. The
spatial correlation function of x(r) between two points in space r1 and r2 is defined as:

Bx(r1, r2) = 〈x(r1)x(r2)〉 (1.2)

where 〈·〉 denotes an ensemble average. On the other hand, the spatial structure func-
tion of x(r) between two points in space r1 and r2 is defined as the mean-square value
of the difference x(r2)− x(r1). That is:

Dx(r1, r2) =
〈
[x(r2)− x(r1)]2

〉
. (1.3)

Similar definitions can be applied to temporal statistics. In the most general case,
atmospheric random variables x(r, t) are non-stationary and inhomogeneous, which
implies that the first-order temporal and spatial statistics (i.e. mean and variance)
are changing over time and space. However in practice, these changes occur rather
smoothly and therefore it can be assumed that x(r, t) are stationary and homogeneous
by increments [60, Ch.3]. This implies that the second-order statistics will only depend
on the time difference τ or the separation vector between two points ρ = r2 − r1, as
long as τ and ρ are not too large.

The atmospheric turbulence is also considered to be isotropic. This implies that the
spatial statistics do not depend on orientation. Therefore, the second-order statistics
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between two points in space will only depend on the modulus of the separation vector
ρ = |ρ| = |r2 − r1|. Under these assumptions the mathematical relationship between
the structure function Dx(ρ) and the correlation function Bx(ρ) becomes:

Dx(ρ) = 2 [Bx(0)−Bx(ρ)] . (1.4)

The spatial statistics of a stationary random variable x(r) can also be stated in the
Fourier space in terms of the power spectrum of x(r), which can be computed as the
three-dimensional Fourier transform of the correlation function Bx(ρ):

Φx (κ) =
∫ +∞

−∞
Bx(ρ) exp(2πiκ · ρ) dρ (1.5)

where κ is the spatial frequency vector [m−1].

1.1.2 Kolmogorov turbulence model

A. N. Kolmogorov [78] developed a model to describe the spatial statistics of a turbulent
flow. Kolmogorov realized that in a fully-developed turbulence there were turbulent
eddies of all different length scales l within a certain range l0 ≤ l ≤ L0. The length
scale of the largest and the smallest eddies are known as the outer scale L0 and the
inner scale l0 of the turbulence, respectively.

Turbulent eddies are in constant mixing. Mixing mainly implies a transfer of en-
ergy between eddies of different length scales. When the atmospheric airflow becomes
turbulent —e.g. due to local convection cells or higher wind speeds— large eddies of
length scale L0 are formed first. Rapid mixing starts to take place and large eddies
are broken up into smaller and smaller ones. In this way, kinetic energy is transferred
from larger to smaller eddies in a so-called energy cascade. This process continues until
the eddies are so small (l ≈ l0) that viscous forces become important (Re ≈ Rec).
Kinetic energy is then dissipated in the form of heat and energy cascading stops. In
equilibrium, the rate of energy transfer per unit mass (ε) must be equal to the rate of
energy dissipation per unit mass at the smallest scales [28].

The range of length scales l0 ≤ l ≤ L0 at which energy cascading takes place
is known as the inertial range. For atmospheric turbulence, the innter scale l0 is of
the order of some millimeters [20], and the outer scale L0 is of the order of tens of
meters [19, 162, 1].

In his original paper Kolmogorov derived the structure function Dv(ρ) of the velocity
fluctuations v = V − 〈V 〉. His main hypothesis was to consider that within the inertial
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range the structure function Dv(ρ) should only depend on the rate of energy transfer
per unit mass ε. Following a dimensional analysis1 he found that Dv(ρ) follows a 2/3
power law:

Dv(ρ) = C2
vρ2/3 (1.6)

where C2
v is the velocity structure constant. C2

v is just a constant of proportionality
that only depends on ε. Following Kolmogorov’s hypothesis it is also possible to de-
rive similar statistical descriptions for other variables of interest, such as temperature
fluctuations Θ = T − 〈T 〉 or refractive index fluctuations n = N − 〈N〉. Obukhov [102]
showed that the structure function DT (ρ) of temperature fluctuations also follows a
2/3 power law:

DT (ρ) = C2
T ρ2/3 (1.7)

where C2
T is the temperature structure constant. From equations 1.4, 1.5, and 1.7

Tatarski [140] showed that the Kolmogorov power spectrum ΦT (κ) of temperature
fluctuations is given by:

ΦT (κ) = 0.033(2π)−2/3C2
T κ−11/3 (1.8)

where κ is the modulus of the spatial frequency vector κ = |κ|. Note that the inertial
range can also be stated in the spatial frequency domain as 1/L0 ≤ κ ≤ 1/l0.

1.1.2.1 Refractive index fluctuations

The refractive index of the air N is a function of temperature and humidity, but in
optical propagation the effects of humidity fluctuations can be neglected [124]. Then,
it can be shown that the structure function Dn(ρ) of the refractive index fluctuations
also follows a 2/3 power law:

Dn(ρ) = C2
nρ2/3 . (1.9)

The refractive index structure constant C2
n and the temperature structure constant C2

T

are related by [124]:

C2
n = (80 · 10−6)

P

T 2
C2

T (1.10)

where P is the air pressure expressed in millibars and T is the absolute temperature
expressed in Kelvins. Similarly to equation 1.8, the Kolmogorov power spectrum Φn(κ)

1The units of ε are
[

J
s·kg

]
=

[
m2

s3

]
, the units of Dv are

[
m2

s2

]
, and the units of ρ are [m]. If Dv only

depends on ρ and ε then Dv ∝ [ε]x [ρ]y and a dimensional analysis leads to x = 2/3 and y = 2/3.
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of the refractive index fluctuations n is given by:

Φn (κ) = 0.033(2π)−2/3C2
nκ−11/3 . (1.11)

Refractive index fluctuations in the atmospheric turbulence are the main cause of the
limitations in astronomical imaging. For this reason refractive index fluctuations are
also known as optical turbulence. The refractive index structure constant C2

n is a mea-
sure of the strength of the optical turbulence. It is usually expressed as a function
of altitude h. The precise characterization of the C2

n(h) profile above an astronomical
observatory is very important for the design of adaptive optics systems. Different in-
struments have been developed to determine experimentally the C2

n(h) profile. Some
of these instruments are:

- Meteorological Balloons. The launch of meteorological balloons equipped with
temperature sensors can characterize the temperature structure constant CT (h)
profile [8]. The C2

n(h) profile can then be derived from equation 1.10. The
resolution in altitude of the C2

n(h) profile obtained with this method is very high
(5 to 10 m). However, note that the resulting C2

n(h) profile is not an instantaneous
one since the balloons take several hours to ascend.

- Scintillation Detection and Ranging (SCIDAR). The C2
n(h) profile can be derived

from the analysis of the scintillation patterns produced by binary stars [156].
The SCIDAR technique requires the use of a relatively large telescope (D =
1 m). When the detector is conjugated to the telescope pupil the SCIDAR cannot
measure the C2

n(h) profile at low altitudes (h < 1 km). This limitation is overcome
when the detector is conjugated to a negative altitude so that the scintillation
patterns produced by low-altitude turbulence can be developed [6, 41]. Note
that the SCIDAR produces real-time measurements of the C2

n(h) profile. The
resolution in altitude is ≈ 300 m. More recently, a SCIDAR profiling technique
that requires only a single star has also been proposed [63].

- Multi-Aperture Scintillation Sensor (MASS). The C2
n(h) profile is retrieved from

the analysis of the scintillation patterns produced by several concentric apertures
collecting the flux of a single bright star [145]. MASS has the advantage that it
requires a smaller telescope (D ≈ 15 cm) than the SCIDAR. The resolution in al-
titude is similar to the one of SCIDAR but practical designs of MASS instruments
are insensitive to low-altitude turbulence.
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Figure 1.1: C2
n(h) profiles from Paranal Observatory obtained with meteorological bal-

loons. The altitude (x-axis) is in kilometers above sea level, and the C2
n (y-axis) is in

m−2/3. (Courtesy: M. Le Louarn).

- Slope Detection and Ranging (SLODAR). The SLODAR is based on Shack-
Hartmann wavefront sensors. The C2

n(h) profile can be derived from the cross-
correlation analysis of the Shack-Hartmann wavefront sensor slopes produced
when observing binary stars [159]. The resolution in altitude can be from medium
(≈ 150 m) to low (≈ 1500 m) depending on the binary star configuration. The
main advantage of SLODAR is that the low-altitude turbulence (h < 2 km) can
be very well characterized.

Figure 1.1 shows a couple of high-resolution C2
n(h) profiles obtained with mete-

orological balloons launched above Paranal Observatory during the 1992 PARSCA
campagin [87]. These profiles show that the turbulence strength is concentrated into
thin layers at particular altitudes where the value of C2

n increases substantially. Fur-
thermore, it can be seen that most of the turbulence strength is concentrated in the
first few kilometers of the atmosphere. More recent studies using SLODAR at Paranal
have confirmed that the 60% of the turbulence is concentrated within the first two
kilometers [66]. Similar C2

n(h) profiles have been measured for other astronomical ob-
servatories [149, 148].

1.1.3 Imaging through the atmosphere

The knowledge of the C2
n profile and the statistics of the refractive index fluctuations

(eq. 1.9 and 1.11) makes it possible to quantify statistically the perturbations intro-
duced to a plane wave propagating through the atmosphere. Indeed, a plane wave
coming from an astronomical object and entering the Earth won’t be planar anymore
when reaching a ground-based telescope. The resultant complex field at the telescope
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pupil Ψ0(r):
Ψ0(r) = A(r) exp[jϕ(r)] (1.12)

will exhibit random fluctuations in the phase ϕ(r) and the amplitude A(r) after propa-
gation through the atmosphere. In the near-field approximation2 amplitude fluctuations
(i.e. scintillation) may be neglected [124], so A(r) = 1. This is equivalent to adopting a
geometrical optics approach. Therefore, phase perturbations in the telescope pupil ϕ(r)
are directly linked to the vertical distribution of refractive index fluctuations n(r, h)
by:

ϕ(r) = k

∫ ∞

0
n(r, h) dh (1.13)

where k = 2π/λ is the wavenumber at the observing wavelength λ. Based on this
equation and the statistical descriptions of the refractive index fluctuations, it can be
shown [124] that the phase ϕ(r) exhibits Gaussian statistics and the structure function
of the phase fluctuations Dϕ(ρ) and the power spectrum of the phase fluctuations Φϕ(κ)
are given by:

Dϕ(ρ) =
〈
[ϕ(r + ρ)− ϕ(r)]2

〉

= 6.88
(

ρ

r0

)5/3

, (1.14)

Φϕ(κ) = 0.023r
−5/3
0 κ−11/3 (1.15)

where r0 is the Fried parameter defined as [37]:

r0 =

[
0.42

(
2π

λ

)2

sec(α)
∫ ∞

0
C2

n(h) dh

]−3/5

, (1.16)

and α is the zenith angle of observation. Note that r0 involves the integral of the C2
n(h)

profile, so it is a measure of the whole turbulence strength as seen from the telescope
pupil. The significance of this parameter can be fully appreciated by studying the
effects of atmospheric turbulence on the images formed by ground-based astronomical
telescopes.

2In the near-field approximation the diffraction effects are neglected, which is valid when the atmo-

sphere scale height is h̄ ¿ D2

λ
. For typical h̄ ≈ 8 km, and large astronomical telescopes (D > 1 m) this

condition is well satisfied.



34 CHAPTER 1. ATMOSPHERIC TURBULENCE AND ADAPTIVE OPTICS

1.1.3.1 Point spread function (PSF) characterization

Let us consider the short-exposure and the long-exposure image of a point-like astro-
nomical object produced by a telescope. By definition, the image will be the point-
spread function (PSF) of the telescope+atmosphere optical system [127]. According to
Fraunhofer diffraction theory, the short-exposure PSF can be computed as:

PSFse(ξ) ∝ ‖F {Ψ0(r)P (r)}‖2 (1.17)

where F {·} denotes the Fourier transform, ξ is the angular position vector in the
image plane (radians or arcseconds), Ψ0(r) is the complex field in the telescope pupil
(eq. 1.12), and P (r) is the telescope pupil function defined as:

P (r) =

{
1 : Doc

2 ≤ |r| ≤ D
2

0 : elsewhere
(1.18)

where D is the telescope diameter and Doc is the central occultation diameter. The
long-exposure PSF can be computed as the ensemble average of the short-exposure
PSFs:

PSF(ξ) ∝ 〈PSFse(ξ)〉 (1.19)

where 〈·〉 denotes an ensemble average. Note that in the absence of atmospheric tur-
bulence the image would be equal to the diffraction-limited PSF of the telescope. For
instance, for a perfect telescope (i.e. with no optical aberrations) the image would be
equal to the Airy disk. Figure 1.2 shows typical diffraction-limited, short-exposure, and
long-exposure PSFs at λ = 2.2µm obtained from numerical simulations for a telescope
with D = 8 m, and Doc = 0.14D. The Fried parameter of the simulated Kolmogorov
turbulence was r0 = 60 cm at λ = 2.2µm.

As can be seen from figure 1.2, the loss in optical resolution due to the atmospheric
turbulence is impressive. At the diffraction limit, the full width half maximum (FWHM)
of the PSF is given by:

FWHMdif = 1.03
λ

D
, (1.20)

whereas for the long-exposure PSF the FWHM is given by [136, 17]:

FWHM = 0.9759
λ

r0
. (1.21)

For an 8-m telescope and for r0 = 60 cm at λ = 2.2µm, the corresponding FHWMs
are:
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Figure 1.2: Comparison of the diffraction-limited, short-exposure, and long-exposure
images at λ = 2.2µm of a point-like astronomical object produced by an 8-m telescope.

FWHM FWHM
(µrad) (arcsec)

diff-limited PSF 0.28 0.06

long-exposure PSF 3.58 0.74

The long-exposure PSF is broadened by a factor of 12 with respect to the diffraction-
limited PSF. The size of the long-exposure PSF is better known as the seeing disk. It
represents the maximum resolution that can be obtained with a ground-based telescope
if the atmospheric turbulence is not compensated for. Equivalently, the Fried parameter
r0 can be interpreted as the maximum diameter of a telescope that would operate at
its diffraction limit under such atmospheric conditions. In our example above, the real
resolution of our 8-m telescope is equivalent to the resolution of a 60-cm telescope.
From equation 1.16 it can also be seen that r0 is proportional to λ6/5. In our example,
the Fried parameter is r0 = 60 cm at λ = 2.2µm whereas at visible wavelengths
(λ = 0.5µm) it becomes r0 = 10 cm. This means that turbulence perturbations are
stronger at shorter wavelengths.

Finally, let us discuss briefly the characteristics of the short-exposure PSF. As seen
in figure 1.2, at short exposures the intensity pattern in the image plane has a granular
or speckled appearance. It can be shown that the diameter of each speckle is equal to
the diffraction limit of the telescope (∼ λ/D radians). However, the speckle pattern
exists within a circle of ∼ λ/r0 radians in diameter.
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Figure 1.3: Comparison of the diffraction-limited, short-exposure, and long-exposure
OTFs at λ = 2.2µm of a point-like astronomical object produced by an 8-m telescope.
The Fried parameter is r0 = 60 cm. f = |f | is the modulus of the spatial frequency
vector (rad−1).

1.1.3.2 Optical transfer function (OTF) characterization

The optical transfer function (OTF) is defined as the Fourier transform of the PSF.
Figure 1.3 shows a cut of the modulus of the normalized OTFs for the diffraction-
limited, short-exposure, and long-exposure PSFs shown in figure 1.2. Note that the
cut-off frequency of the diffraction-limited OTF is equal to D/λ rad−1.

In the case of short exposures, the spatial frequency content up to the diffraction
limit D/λ is present in the OTF, but it is quite distorted and attenuated. Some
techniques, such as speckle interferometry, have been developed to partially recover the
high-frequency information by post-processing short-exposure images [79].

In the case of long-exposures, since the PSF is the average of the short-exposure
PSFs (eq. 1.19), then the speckle pattern is averaged out and the high-frequency
information above r0/λ is completely lost. The cut-off frequency of the long-exposure
OTF is effectively equal to r0/λ rad−1. In our example, it can be seen in figure 1.3 that
the cut-off frequency of the long-exposure OTF is 12 times smaller than the diffraction
limit, i.e.:

r0

λ
∼ D

12λ
= 0.083

D

λ
.

The long-exposure OTF can be expressed as the product of two optical transfer func-
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tions [124]:
OTF(f) = OTFtur(f) OTFtel(f) (1.22)

where OTFtel(f) is the optical transfer function of the telescope and OTFtur(f) is
the optical transfer function of the atmosphere. The OTF of the atmosphere can be
computed as the correlation function of the complex field in the telescope pupil Ψ0(r)
(eq. 1.12) evaluated in λf . From equation 1.2, the correlation function of Ψ0(r) can be
expressed as:

B0(ρ) = 〈Ψ0(r)Ψ∗
0(r + ρ)〉 . (1.23)

Then, the optical transfer function of the atmosphere is given by:

OTFtur(f) = B0(λf) . (1.24)

It can also be shown [124] that B0(ρ) is related to the structure function of the phase
fluctuations Dϕ(ρ) by:

B0(ρ) = exp
[
−1

2
Dϕ(ρ)

]
. (1.25)

Finally, substituting equations 1.24 and 1.25 into 1.22 leads to the full statistical de-
scription of the long-exposure OTF:

OTF(f) = exp
[
−1

2
Dϕ(λf)

]
OTFtel(f) . (1.26)

The full statistical description of the short-exposure OTF is more elaborate since it is
not possible to split the OTF in the product of two optical transfer functions. The
details can be found in references [124, 37].

1.1.4 von Kármán turbulence model

In the strict sense, the Kolmogorov turbulence model is only valid within the inertial
range 1/L0 ≤ κ ≤ 1/l0. von Kármán proposed a generalization of the Kolmogorov
model that takes into account the effects of the inner and outer scales. The von Kármán
power spectrum of the refractive index fluctuations is given by [127]:

Φn (κ) = 0.033(2π)−2/3C2
n(h)

[
κ2 +

(
1
L0

)2
]−11/6

exp
{
− κ2

κ2
m

}
(1.27)
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Phase structure function
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Figure 1.4: Structure function of the phase fluctuations for Kolmogorov turbulence
(L0 → ∞) and for von Kármán turbulence (L0 = 100 m and L0 = 22 m). The Fried
parameter is r0 = 20 cm.

where κm = 5.92/l0. This expression can be considered to be valid for all κ.3 The
Kolmogorov power spectrum becomes a particular case for which L0 →∞ and l0 → 0.
In astronomical imaging, the effect of the inner scale l0 can be in general neglected.
On the other hand, the outer scale L0 has a major impact on most of the statistical
descriptions of interest. For instance, the von Kármán structure function of the phase
fluctuations Dϕ(ρ), and the von Kármán power spectrum of the phase fluctuations
Φϕ(κ) become [17]:

Dϕ(ρ) = 0.172
(

r0

L0

)−5/3
[
1−

(
2πρ

L0

)5/6

K5/6

(
2πρ

L0

)]
(1.28)

Φϕ(κ) = 0.023r
−5/3
0

[
κ2 +

(
1
L0

)2
]−11/6

(1.29)

where Kν(·) denotes the modified Bessel function of the second kind [157]. For example,
figure 1.4 shows both the Kolmogorov and the von Kármán phase structure function
Dϕ(ρ) for different values of L0, and for r0 = 20 cm.

We will discuss the impact of L0 on the FWHM of the long-exposure PSF in sec-
tion 4.2.4.1, in the framework of MAD. An in-depth discussion of the effects of L0 in
astronomical imaging can be found in reference [17].

3Note that the Kolmogorov power spectrum (equation 1.8) diverges when κ → 0.
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1.1.5 Modal expansion of the phase perturbation

It is common practice in optical design and analysis to express phase functions ϕ(r) in
terms of their expansions in a given modal basis. We have chosen to use the Zernike
basis for the study of atmospheric turbulence and adaptive optics systems throughout
this work. We will briefly review below the properties of modal expansions in Zernike
polynomials of the phase perturbations introduced by atmospheric turbulence. If ϕ(r)
denotes the turbulent phase, its modal expansion in Zernikes is expressed as:

ϕ(r) ≈
nmod∑

i=1

ziZi(r) (1.30)

where Zi(r) is the ith Zernike polynomial and zi is the corresponding Zernike coefficient.
Equation 1.30 can only be an identity if nmod → ∞. The ith Zernike polynomial is
expressed as [127, Ch.3]:

Zi(r) =





√
n + 1 Rm

n (r)
√

2 cos(mθ) if m 6= 0 and i is even.√
n + 1 Rm

n (r)
√

2 sin(mθ) if m 6= 0 and i is odd.√
n + 1 R0

n(r) if m = 0 .

(1.31)

where n is the radial order, m is the azimuthal frequency, and (r, θ) are the polar
coordinates of the position vector r. The function Rm

n (r) is defined by:

Rm
n (r) =

(n−m)/2∑

s=0

(−1)s(n− s)!
s![(n + m)/2− s]![(n−m)/2− s]!

rn−2s . (1.32)

We will follow the convention of ordering Zernike polynomials in ascending order of n

and m as introduced by Noll [99] and reviewed in [127, Ch.3]. It is important to recall
that the maximum spatial frequency κmax contained in a given Zernike is related to its
radial order n by [15]:

κmax ≈ 0.37
n + 1

D
(1.33)

where D is the diameter of the circle over which the Zernikes are defined.

Phase perturbations introduced by atmospheric turbulence can now be represented
by the set of coefficients {zi}. The statistical description of Zernike coefficients for the
case of Kolmogorov turbulence was derived by Noll [99]. Since the (piston-removed)
phase perturbations exhibit zero-mean Gaussian statistics, the Zernike coefficients {zi}
will do so too, and their statistics can be fully described by the covariance matrix 〈zizj〉
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given by:

〈zizj〉 = 0.0072
(

D

r0

)5/3

(−1)
n+n′−2m

2

√
(n + 1)(n′ + 1)π8/3δmm′

× Γ

[
14
3 , n+n′−5/3

2
n−n′+17/3

2 , n′−n+17/3
2 , n+n′+23/3

2

]
(1.34)

if i−j is even, and 〈zizj〉 = 0 if i−j is odd. In the equation above n and m are associated
with zi and n′ and m′ are associated with zj . It is important to recall that

〈
z2
1

〉
—

which corresponds to the variance of the piston mode— is infinite as a consequence
of the Kolmogorov model of turbulence. For the case of von Kármán turbulence, the
covariance matrix of Zernike coefficients depends on L0 and it is given by [17]:

〈zizj〉 = 1.16
(

D

r0

)5/3

(−1)
n+n′−2m

2

√
(n + 1)(n′ + 1) δmm′

×
∞∑

k=0

{
(−1)k

k!

(
πD

L0

)2k+n+n′−5/3

× Γ

[
k + 3+n+n′

2 , k + 2 + n+n′
2 , k + 1 + n+n′

2 , 5
6 − k − n+n′

2

3 + k + n + n′, 2 + k + n, 2 + k + n′

]

+
(

πD

L0

)2k

Γ

[
n+n′

2 − 5
6 − k, k + 7

3 , k + 17
6 , k + 11

6
n+n′

2 + 23
6 + k, n−n′

2 + 17
6 + k, n−n′

2 + 17
6 + k

]}
(1.35)

In practice, the summation in equation 1.35 up to k = 50 gives already a good ap-
proximation. Figure 1.5 shows a plot of the variance

〈
z2
i

〉
of the first 100 Zernikes for

different values of L0 and for D/r0 = 1. Note that L0 affects only the variance of the
first radial orders.

1.1.6 Temporal characterization

So far we have reviewed the spatial characterization of atmospheric turbulence and
their effects on astronomical imaging. We will briefly review in this section the tem-
poral characterization of atmospheric turbulence. As we discussed in section 1.1.1,
atmospheric random variables are considered to be stationary by increments. Hence,
their statistics only depend on the time difference τ = t2− t1, where t2 > t1, if τ is not
too large.

An important hypothesis that allows one to directly link the spatial and the tem-
poral statistics of atmospheric random variables is the Taylor’s frozen flow hypothe-
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Figure 1.5: Variance of Zernike coefficients
〈
z2
i

〉
for Kolmogorov turbulence (L0 →∞)

and for von Kármán turbulence (L0 = 100 m and L0 = 22 m). Plots are shown for
D/r0 = 1.

sis [141]. This hypothesis basically states that over short time intervals the phase
perturbations ϕ(r, h, t) introduced by a turbulent layer at height h do not change ex-
cept for a translation with a constant transverse velocity ~V due to the wind [127].
Therefore, the phase fluctuations at time t2 are related to the phase fluctuations at
time t1 by:

ϕ(r, h, t2) = ϕ(r− ~V τ, h, t1) . (1.36)

Based on this hypothesis it can be shown that the Kolmogorov spatio-temporal structure
function Dϕ(ρ, τ) of the phase fluctuations in the telescope pupil after propagation
through the atmospheric turbulence is given by [127]:

Dϕ(ρ, τ) = 6.88
∫ ∞

0

(
|ρ + ~V (h) τ |

r0

)5/3
C2

n(h)
IC

dh (1.37)

where IC =
∫∞
0 C2

n(h) dh and ~V (h) is the wind velocity profile. Similarly to the C2
n(h)

profile, the ~V (h) profile above an astronomical observatory can also be characterized
with the SCIDAR technique [72, 7]. For instance, it has been shown that the peak in
wind velocity (about 30 m/s) is reached at an altitude between 9 and 12 km above sea
level depending on the geographical site.

A general parameter to evaluate how fast the atmosphere is evolving is the atmo-
spheric coherence time —also known as Greenwood time delay [40]— which is defined
as the time difference τ0 for which Dϕ(0, τ0) = 1 rad2. For Kolmogorov turbulence, the
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coherence time τ0 results in:
τ0 = 0.314

r0

V̄
(1.38)

where V̄ is a weighted average of the wind speeds of all the turbulent layers computed
as:

V̄ =

[∫∞
0 |~V (h)|5/3C2

n(h) dh∫∞
0 C2

n(h) dh

]3/5

. (1.39)

1.1.6.1 Temporal power spectra of Zernike coefficients

Based on the Taylor’s hypothesis, Conan et. al. [16] studied thoroughly the charac-
teristics of the temporal power spectrum of the phase fluctuations. We will be mainly
interested in the temporal power spectrum of phase perturbations expanded in Zernike
polynomials. Conan et. al. [16] showed that the temporal power spectra of the Zernike
coefficients {zi} representing the phase in the telescope pupil after propagation through
the atmospheric turbulence (i.e. propagation through multiple turbulent layers each
one of them with a particular wind velocity ~V ) have the following asymptotic behavior:

Wzi(ν) ∝





ν−2/3 if ν < νc and i = {2, 3}
ν0 if ν < νc and i > 3
ν−17/3 if ν > νc

(1.40)

where Wzi(ν) denotes the temporal power spectrum of Zernike coefficient zi, and ν

stands for the temporal frequency in Hertz. The temporal cut-off frequency νc is given
by:

νc(n) ≈ 0.3(n + 1)
V̄

D
(1.41)

where n is the radial order of the ith Zernike, and D is the telescope diameter. It is
important to note that the transition around the temporal cut-off frequency νc can be
broadened if the velocity profile ~V (h) exhibits a wide range of speed values.

1.1.7 Atmospheric turbulence simulation

In this section we will describe the way we have simulated the atmospheric turbulence in
our simulation tool. Assuming that the atmospheric turbulence volume is represented
by a set of thin turbulent layers, each layer is simulated with a corresponding phase
screen. The phase screens are generated following the McGlamery method [96], also
known as the Fourier method. This method consists in generating a two-dimensional
array of complex, zero-mean, unit-variance Gaussian random numbers and then coloring



1.2. ADAPTIVE OPTICS SYSTEMS 43

Figure 1.6: Schematic representation of an adaptive optics system (Courtesy: T. Fusco).

this array with the desired spectrum by multiplying it with the square root of the
Kolmogorov or von Kármán power spectrum Φϕ(κ) (equation 1.15 or 1.29). The two-
dimensional, inverse Fourier transform of this array results in the desired phase screen.
Finally, the phase screens have to be weighted by a specified C2

n(h) profile.
The temporal evolution of the turbulence is simulated based on the Taylor’s frozen

flow hypothesis (section 1.1.6) by displacing the phase screens according to a specified
wind speed profile. We will present the characterization of the turbulence generated
by our simulation tool in the framework of the MAD system, in chapter 4.

1.2 Adaptive optics systems

Adaptive optics (AO) is a technique that was conceived to compensate in real time for
the phase perturbations introduced by atmospheric turbulence. Figure 1.6 shows an
schematic representation of an AO system. The main components are:

1. one or several deformable mirror (DMs),

2. one or several wavefront sensors (WFSs), and

3. the controller.
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Atmospheric turbulence compensation is achieved by adapting the shapes of the DMs
in real-time to follow the wavefront perturbations. The control signals that drive the
DMs are generated by the controller based on the measurement signals delivered by
the WFSs. As seen in figure 1.6, the WFSs are located after the DMs in the optical
path. Hence, they measure the wavefront perturbation residuals after correction by the
DMs. The goal of the AO control loop is to make these residuals as small as possible.
Finally, the compensated wavefront is delivered to the astronomical instrument (e.g. an
imaging camera or a spectrograph) located in the focal plane of the telescope. Thanks
to adaptive optics the image quality at the focal plane can be close to the diffraction
limit in a particular FoV.

In the following sections we will introduce the mathematical models of the AO
components that we will use throughout this work. Then, we will briefly describe some
of the different configurations of adaptive optics systems that have been conceived
for specific applications, namely single-conjugate adaptive optics (SCAO), ground-layer
adaptive optics (GLAO), and multi-conjugate adaptive optics (MCAO). The latter con-
figuration is the main topic of this work, but we have also worked with the other two
configurations in the framework of the MAD project (chapter 4).

Let us note that other configurations have been recently proposed too, such as
eXtreme adaptive optics (XAO) —designed to provide very high-order compensation
in a tiny FoV, which is the kind of AO compensation required for extra-solar planet
imagers [49, 89]; or multi-object adaptive optics (MOAO) —designed to provide AO
compensation in several tiny patches in a large FoV, which is the kind of AO compen-
sation required for multi-object integral-field spectrographs [54].

1.2.1 Deformable mirrors

The deformable mirrors (DMs) are the opto-mechanical devices that physically perform
the wavefront compensation in an AO system. SCAO and GLAO systems have only
one DM conjugated to the telescope pupil whereas MCAO systems have two or three
DMs each one conjugated to a different altitude.

There are several technologies of deformable mirrors, but the correction principle
is basically the same for all of them. That is, the phase shift introduced by the DM
—denoted as ϕcor(r)— is produced by a continuous reflective facesheet that is deformed
by a set of actuators placed at the back of it. A good review of DM technologies can
be found in [126, Ch.4]. Some of the most popular technologies are:
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- Stack actuator mirrors (SAMs). The reflective facesheet is deformed by a set of
stacked piezoelectric4 actuators driven by voltage signals. These actuators push
and pull the facesheet producing localized deformations. SAMs with up to a
hundred of actuators were widely used for the first astronomical SCAO systems
deployed in medium size (D ≈ 4 m) telescopes [122, 70]. Recent advances in
manufacturing processes have led to the production of SAMs with thousands of
actuators.

- Bimorph deformable mirrors. The actuators are formed by two continuous wafers
of oppositely-polarized piezoelectric materials that are bonded together and placed
at the back of the facesheet. A set of electrodes —defining the number of
actuators— is deposited between the two wafers. When a voltage signal is ap-
plied to one of the electrodes a wafer contracts locally while the other expands
inducing a bending of the facesheet. Bimorph deformable mirrors were originally
conceived to be used in curvature SCAO systems [125].

- Micro deformable mirrors. This is a recent technology based on micro-opto-
electro-mechanical systems (MOEMS). The reflective facesheet is deformed by an
array of micro-machined electrostatic actuators. The number of actuators can
range from tens to thousands [106, 161].

- Voice coil deformable mirrors. This technology has been developed in particular
for the large secondary deformable mirrors currently being manufactured for the
Large Binocular Telescope (LBT) and for the Very Large Telescope (VLT) [119, 4].
The deformable surface, more than a meter in diameter, is a concave thin mirror
(≈ 1 mm thick) deformed by hundreds of magnetic voice coil actuators placed at
the back.

Some of the most important parameters in the design of deformable mirrors are the
number of actuators, the spacing between them, the maximum stroke, the drive voltage
levels, and the shape of the influence functions.

1.2.1.1 DM linear model

The residual phase after correction by a DM can be mathematically expressed as:

ϕres(r, h, t) = ϕtur(r, h, t)− ϕcor(r, h, t) . (1.42)

4The most common material is PZT (Lead zirconate titanate).
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where ϕcor(r, h, t) denotes the phase shift —or correction phase— at time t introduced
by a DM conjugated at altitude h. Similarly, ϕtur(r, h, t) denotes the turbulent phase
at the same instant, and for a turbulent layer located at the same altitude h.

Let us consider a deformable mirror with nact actuators. The deformation produced
by the DM when an unit control signal is applied to the ith actuator (and setting the
control signals of all the other actuators to zero) is called the influence function of
the ith actuator. We will denote it as Ui(r). If the DM is considered to be a linear
device, then the corrective phase can be expressed as a linear combination of the nact

influence functions. Denoting the control signal applied to the ith actuator as ui(t), we
can express the corrective phase at time t by:

ϕcor(r, t) =
nact∑

i=1

ui(t)Ui(r) . (1.43)

In practice, some non-linearities can take place like hysteresis [160, 27] or saturation due
to the limited stroke of the actuators. The risk of saturation is higher under bad seeing
conditions since the DM has to compensate for larger phase fluctuations. In order to
reduce the stroke requirements on the actuators of a DM, it is common practice to use
a tip-tilt mirror to compensate for low-order modes, as seen in the schema of figure 1.6.
As shown in figure 1.5, most of the turbulent power (≈ 87%) is concentrated in the tip
and tilt modes (Z2 and Z3 Zernike modes). When a tip-tilt mirror is used, the DM is
able to dedicate its full stroke to compensate for the high-order ones.

Equation 1.43 can also be expressed as a matrix-vector multiply. For this purpose
let us consider that each influence function (IF) is measured and sampled in a grid
of npix xnpix points. Then, each IF can be expressed as a column-vector Ui(k) of
dimension n2

pix, where k = {1, . . . , n2
pix}. We will define the Influence Function Matrix,

denoted by N, as the matrix whose ith-column contain the vector Ui(k). In a similar
way we can define a column-vector for the (pixelized) correction phase, denoted as
ϕcor(k), and a column-vector, denoted as u, containing the nact control signals. Then,
equation 1.43 can be simply written as:

ϕcor(k, t) = Nu(t) . (1.44)

1.2.1.2 The mirror space

We will require in chapter 2 to formulate the problem of reconstruction in MCAO using
the formalism of linear algebra. Within this formalism, the turbulent phase ϕtur(r) can
be seen as a vector of an infinite-dimensional space denoted as E and known as the
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phase space. The Zernike polynomials introduced in section 1.1.5 form a basis of E .

Any deformable mirror comprises a finite number of actuators, and therefore it has a
limited number of degrees of freedom. It can only generate a subspace of E , denoted as
M, and known as the mirror space. The mirror space is spanned by the set of influence
functions {U1(k), . . . ,Unact(k)}. If all influence functions are linearly independent then
the dimension of M will be equal to the number of actuators: dim {M} = nact. Also,
the set of influence functions will become a basis of M. Throughout this work we
will rather work with the coordinates of M. These coordinates depend on the chosen
basis. For instance, when the basis of M is given by the set of influence functions, the
coordinates are simply given by the corresponding set of control signals {u1, . . . , unact}.
In general, for any chosen basis, we will call mirror modes the basis functions, and
modal coordinates the associated coordinates. The phase space E can now be expressed
as the direct sum:

E = M⊕M⊥ (1.45)

whereM⊥ is the orthogonal complement ofM. Therefore, the turbulent phase ϕtur(k, t)
can be expressed as the sum of two components:

ϕtur(k, t) = ϕtur‖(k, t) + ϕtur⊥(k, t) , (1.46)

where the first component belongs to M and the second one belongs to M⊥. The DM
can only try to compensate for ϕtur‖(k, t). The complement component ϕtur⊥(k, t) will
always remain uncompensated. It is also generally known as the fitting error of the
DM. The residual phase after DM correction (equation 1.42) can then be expressed as:

ϕres(r, h, t) = ϕtur‖(r, h, t)− ϕcor(r, h, t) + ϕtur⊥(r, h, t) . (1.47)

1.2.1.3 Fitting by a DM

As we mentioned above, the DM can only try to compensate for ϕtur‖(k, t). Let
us suppose that we know the shape of the turbulent phase ϕtur(k, t). Then, the
term ϕtur‖(k, t) can be computed as the orthogonal projection of the turbulent phase
ϕtur(k, t) onto M. Its modal coordinates utur‖(t) can be found by minimizing the
function [52]:

J =
∥∥ϕtur(k, t)−Nutur‖(t)

∥∥2
. (1.48)
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The solution to this minimization problem is simply given by the generalized inverse
of the matrix N. Hence, the modal coordinates of ϕtur‖(k, t) are computed as:

utur‖(t) =
(
NTN

)−1
NT ϕtur(k, t) , (1.49)

and ϕtur‖(k, t) is simply computed from its modal components as follows:

ϕtur‖(k, t) = Nutur‖(t) . (1.50)

Of course, before attempting to fit a given phase ϕtur(k, t) with a DM, we need to know
first what this phase looks like. This is the problem of wavefront reconstruction that
we will study in chapter 2 for the case of MCAO.

1.2.2 Wavefront sensors

Wavefront sensors (WFSs) are the devices that are used to measure the wavefront
distortions caused by the atmospheric turbulence [128]. Most wavefront sensors do not
measure the wavefront directly. Instead, they measure either the wavefront slope (first
derivative) or the curvature (second derivative). Some of the WFSs currently used in
astronomical adaptive optics are:

- Shack-Hartmann WFS. This is probably the most popular slope WFS used in
astronomical adaptive optics. We will actually work with this kind of sensors
in the framework of MAD (chapter 4), so we will describe it further in section
1.2.2.1.

- Curvature WFS. This WFS was invented by F. Roddier [125], and it is normally
used with bimorph deformable mirrors in curvature SCAO systems.

- Pyramid WFS. This WFS was introduced by R. Ragazzoni [115]. The concept
of the pyramid WFS is based on the Foucault’s knife-edge test. A transmissive
pyramid located in the focal plane is used to split a beam of light falling on
its vertex. A modulation is usually applied to the beam in order to distribute
the light among the four facets of the pyramid. It can be shown that —in the
geometrical approximation— the sensor’s signal is proportional to the wavefront
gradient [154].
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Figure 1.7: Schematic representation of a Shack-Hartmann wavefront sensor (Courtesy:
T. Fusco).

1.2.2.1 Shack-Hartmann wavefront sensor

Figure 1.7 shows a diagram of a Shack-Hartmann wavefront sensor (SH-WFS). The
lenslet array is optically conjugated to the pupil plane of the telescope. It spatially
samples the distorted wavefront in the pupil plane by means of a grid of nxn tiny lenses,
called subapertures. Each subaperture forms an image of a small part of the pupil onto
a detector located in the focal plane of the lenslet array. When the wavefront in the
pupil ϕ(r) is plane, the subapertures images –also known as spots– are formed at
the reference positions (x0, y0) marked with crosses in figure 1.7. On the other hand,
when ϕ(r) is distorted by the atmospheric turbulence, the spots are displaced from the
reference positions and it can be shown that the centroid (xc, yc) of a displaced spot is
proportional to the gradient of ϕ(r) averaged on the subaperture area [128]:

xc = f
wfs

sx =
f

wfs
λ

2πA

∫ ∫
A

∂ϕ(r)
∂x dx dy + wx

yc = f
wfs

sy =
f

wfs
λ

2πA

∫ ∫
A

∂ϕ(r)
∂y dy dx + wy

(1.51)

where sx and sy are the averaged gradients –or slopes– in x and y (in radians), f
wfs

is the focal length of the lenslet array, λ is the central wavelength of the detector, A

is the area of the subaperture, and wx and wy denote the additive measurement noise
components. The quantities ∂ϕ(r)

∂x and ∂ϕ(r)
∂y in equation 1.51 are also known as the

angles of arrival, αx and αy.
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In practice, when a Charge-Coupled Device (CCD) is used as the detector, the
centroid (xc, yc) can be computed as [128]:

xc =

∑
i,j xi,jIi,j∑

i,j Ii,j
yc =

∑
i,j yi,jIi,j∑

i,j Ii,j
(1.52)

where (xi,j , yi,j) are the coordinates of the pixel (i, j), and Ii,j is the signal (i.e. inte-
grated flux) of pixel (i, j). In matrix form, the linear model of the SH-WFS can be
expressed as:

s(t) = Dϕ(r, t) + w(t) (1.53)

where the vector s contains the slopes [sx; sy] for all subapertures, the vector w contains
the associated measurement noise [wx;wy], and the matrix D stands for the linear
operation of equation 1.51.

Measurement noise

The main contributions to the measurement noise w are the photon noise and the
detector noise. The variance of w can be expressed as:

σ2
w = σ2

ph + σ2
det (1.54)

where σ2
ph is the photon noise variance and σ2

det is the detector noise variance. We will
consider that the detector is a Charge-Coupled Device (CCD). It can be shown that
the variance of the noise contributions (given in terms of the phase difference at the
borders of the subaperture in rad2) are given by [128]:

σ2
ph =

π2

2
1

nph

(
XT

XD

)2

(1.55)

σ2
det =

π2

3
σ2

e−

n2
ph

(
X2

S

XD

)2

(1.56)

where nph is the number of photons per subaperture and per frame, XT is the size of
the SH spot, XD is the size of the diffraction-limited SH spot, XS is the size of the
window used to calculate the centroids of the SH spot, and σe− is the rms number of
electrons-noise per pixel and per frame.



1.2. ADAPTIVE OPTICS SYSTEMS 51

Aliasing

The larger the number of subapertures in a SH-WFS the better the wavefront is spatially
sampled. According to the Shannon theorem, the maximum spatial frequency that the
SH-WFS can measure is |κ|max = 1/2d, where d is the size of the subaperture. Spatial
frequencies larger than |κ|max will be aliased onto the lower frequencies.

1.2.3 Wavefront sensing simulation

In this section we will briefly describe the way we have simulated the wavefront sens-
ing devices. Our simulation tool supports two kinds of wavefront sensors: 1) Shack-
Hartmann WFSs, and 2) Idealized WFSs. We will describe the computer models of
these WFSs below.

1.2.3.1 Shack-Hartmann WFS

The SH-WFS models were developed at ONERA by C. Petit [107] and M. Nicolle [97].
There are two different ways to simulate a SH-WFS, based on either a geometrical or
a diffractive model:

• Geometrical SH-WFS model. This model is a generalization of the model origi-
nally proposed by Fried [38], in which the slopes sx and sy are computed from the
phase differences at the border of the subaperture. If we model the input phase
as an nxn pixelized phase map ϕx,y, where x = {1 . . . n} and y = {1 . . . n}, then
the slopes can be computed as:

sx =
1
2d

n∑

y=1

(ϕn,y − ϕ1,y) + wx (1.57)

sy =
1
2d

n∑

x=1

(ϕx,n − ϕx,1) + wy (1.58)

where d is the size of the subaperture. The measurement noise components wx

wy are simulated with zero-mean Gaussian random variables with variance σ2
w

(equation 1.54).

• Diffractive SH-WFS model. This numerical model reproduces the physical pro-
cess of the formation of subaperture images in the focal plane of the lenslet array,
according to equation 1.17. Following equation 1.52, the centroid of each sub-
aperture image provides an estimate of the slopes. Both photon and detector
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noise can be added directly onto the pixelized subaperture images prior to the
centroid computation.

We have customized the SH-WFS models for the accurate simulation of the star-
oriented configuration of the MAD system, as will be described in chapter 4.

1.2.3.2 Idealized WFS

The so-called idealized5 WFS is a WFS capable of projecting directly the input phase
onto the Zernike basis. The output of this module is a set of Zernike coefficients.
This kind of WFS has been widely used in previous works to study the problem of
reconstruction and control in AO systems [55, 47].

Even if this WFS is not a realistic one, it is possible to introduce a realistic mea-
surement noise that matches the characteristics of the propagated measurement noise
on Zernike coefficients reconstructed from SH-WFS slopes. In this case, the propagated
measurement noise variance on the ith Zernike is computed as:

σ2
Zi

= pm,nσ2
w (1.59)

where pm,n is the propagation coefficient associated with the ith Zernike, and it de-
pends on both the radial order n and the azimuthal frequency m of the ith Zernike.
Rigaut & Gendron [121] derived best-fit expressions for these coefficients:

pm,n = 0.295 (n + 1)−2.05 if n = m

pm,n = 0.174 (n + 1)−2 if n 6= m .
(1.60)

The measurement noise variance σ2
w in equation 1.59 can also be computed to emulate

the realistic signal-to-noise ratio (SNR) of a SH-WFS. The SNR on each subaperture
of a SH-WFS is defined as the ratio between the angle of arrival variance (σ2

αx
) and the

measurement noise variance (σ2
w):

SNR
4
=

σ2
αx

σ2
w

. (1.61)

It can be shown that the angle of arrival variance σ2
αx

due to Kolmogorov turbulence
is given by [126]:

σ2
αx

= σ2
αy

= 0.162 (2π)2 d−5/3r
−5/3
0 [rad2] (1.62)

5It was called idealized simply to state that this WFS is not a realistic one.
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where r0 is the Fried parameter, and d is the size of a squared subaperture. Substituting
equation 1.62 into 1.61 leads to the following expression for the equivalent measurement
noise variance σ2

w:

σ2
w =

0.162 (2π)2

SNR

(
d

r0

)5/3

. (1.63)

We will widely use idealized WFSs in chapters 2 and 3 in our studies of reconstruction
and control for MCAO systems.

1.2.4 Calibration of an AO system

In the previous sections we described the characteristics of wavefront sensors and de-
formable mirrors in an independent way. Once these components are integrated in the
AO bench, the response of the AO system as a whole entity needs to be calibrated. The
(static) response of an AO system is completely characterized by its interaction matrix.
Another important calibration issue is related to the non-common path aberrations.
We will review these issues below.

1.2.4.1 Interaction matrix

If there is a total of nmes WFSs measurements and a total of nact DMs actuators,
the interaction matrix is an nmes x nact matrix whose ith column is the set of WFSs
measurements produced when an unit control signal is applied to the ith actuator.
Algebraically, the interaction matrix characterizes the mapping between the DMs space
and the WFSs space. Assuming linearity, the mapping can be expressed in matrix form
as:

s = Mintu (1.64)

where Mint denotes the interaction matrix. In general, the interaction matrix is de-
termined experimentally, but in principle it could also be determined synthetically by
using the mathematical or numerical models of the AO system components. We will
discuss further the differences between experimental and synthetic interaction matrices
in section 4.6, in the framework of the MAD system.

1.2.4.2 Non-common path aberrations

The non-common path aberrations (NCPA) are the (low-order and static) aberrations
introduced by the optical components located between the beamsplitter and the imaging
camera (figure 1.6). These aberrations will have an impact on the final image quality
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Figure 1.8: Block diagram of a closed-loop AO control system.

produced at the focal plane of the scientific camera. Even if the NCPA cannot be
sensed by the WFSs, it is anyway possible to use the AO system itself to compensate
for these aberrations, as briefly described below.

The first step is to calibrate the non-common path aberrations. This can be done,
for instance, by using the phase diversity technique [59]. Once the NCPA are calibrated,
the compensation is achieved by introducing offset voltages to the DMs to cancel out
the effect of the NCPA on the scientific camera. These offset voltages can be translated
into reference slopes using equation 1.64. As we will discuss in section 1.2.5, the AO
control loop can then be closed around the reference slopes, causing the AO system to
cancel out the effect of the NCPA at each iteration.

The compensation of NCPA aberrations has been succesfully implemented in several
SCAO systems, for instance in the Nasmyth Adaptive Optics System (NAOS) of the
VLT [14, 65]. The extension of this technique to MCAO systems has been recently
studied [75]. In principle, the several DMs available in an MCAO system can be used
to compensate for the NCPA existing in a finite field-of-view.

1.2.5 The controller

Figure 1.8 shows the block diagram of a closed-loop AO control system. The goal of the
control system is to make the output of the plant —in this case the residual wavefront
ϕres(r)— behave in a desired way by manipulating the plant input —in this case the
command vector u. For AO systems, the goal is to keep the residual wavefront as flat as
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possible in a given FoV. Then, the controller needs to manipulate u to counteract the
effects of the disturbance to the plant, i.e. the turbulent phase ϕtur(r). The feedback
signal is provided by the WFSs, and the error signal is then given by:

e = sref − s (1.65)

where sref is the reference slope vector (section 1.2.4.2). It is important to note that
an AO system is actually a multi-variable spatio-temporal control system. However,
the spatial and temporal aspects of control are in general considered separately. In this
case, the action of the controller can be expressed in two steps. The first step is related
to the spatial reconstruction of the wavefront to be compensated for —expressed in
any DM basis (section 1.2.1.2)— computed from the WFS measurements. Considering
a linear system, the first step can be expressed as:

u = Re (1.66)

where R is known as the reconstruction matrix. The simplest reconstruction matrix is
the generalized inverse of the interaction matrix Mint (eq. 1.64), but other in principle
more performing reconstruction matrices incorporating statistical knowledge on the
atmospheric turbulence and on the measurement noise have also been studied. We will
study in chapter 2 the problem of wavefront reconstruction in MCAO.

The second step is related to the temporal aspects of control, and it can be described
as the temporal filtering applied to the command vector u in order to provide a good
disturbance rejection and to ensure the stability of the AO system. The simplest
temporal controller is an integrator, but other more sophisticated controllers have been
proposed too. For example, the modal integrator (where the gain of the integrator
controller is optimized for each spatial mode [55, 31]), predictive controllers (where the
delay introduced by an AO system is compensated for by predicting the evolution of the
turbulence [23, 25]), or optimal controllers based on the Kalman filtering technique [103,
132]. In chapter 3, we will study the application of modal integrators for MCAO.

1.2.6 Performance evaluation

There are different metrics to quantify the improvement brought by adaptive optics
correction in a particular direction α of the FoV. The most common are the wavefront
error, the Strehl ratio, and the ensquared energy :
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- The wavefront error (WFE) is defined as the rms value of the residual wavefront
ϕres(r, α) obtained after AO correction in the direction α. It can be expressed
as:

WFE(α) =

√〈
1
S

∫ ∫

S
[ϕres(r,α)]2 dr

〉
(1.67)

where S stands for the telescope pupil area, and 〈·〉 denotes an ensemble average.
The goal of an AO system is to minimize the WFE in a selected FoV {α}.

- The Strehl ratio (SR) is a performance parameter that characterizes directly a
long-exposure AO-corrected image. The Strehl ratio in the direction α is defined
as:

SR(α) =
PSFα(~0)

PSFAiry(~0)
(1.68)

where PSFα(~0) denotes the intensity value at the center of the AO-corrected
PSF in the direction α —the vector ~0 denotes the center of the PSF—, and
PSFAiry(~0) denotes the intensity value at the center of the diffraction-limited
PSF of the telescope. Recalling that the PSF and the long-exposure OTF are
Fourier-transform pairs, the Strehl ratio can also be expressed as:

SR(α) =
∫

OTFα(f) df∫
T (f) df

(1.69)

where OTFα(f) denotes the long-exposure OTF in the direction α, T (f) is the
transfer function of the (diffraction-limited) telescope, and f is the spatial fre-
quency vector. The Strehl ratio values lie within 0 and 1 (perfect correction),
and they are usually expressed in percent. The goal of an AO system is then to
maximize the SR in a selected FoV {α}. When SR > 20%, the SR and the WFE
can be related by the Maréchal approximation [126]:

SR(α) ' exp
{
− [WFE(α)]2

}
. (1.70)

Note from this expression that minimizing the WFE is equivalent to maximizing
the SR in direction α.

- The ensquared6 energy (EE) is defined as the integral of the long-exposure PSF
within a square of a given size centered on the PSF (figure 1.9). This metric

6The word ensquared does not exist in the English language but it has been widely used in this
context by the AO community.
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EE (D=4m, λ=2.2µm)
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Figure 1.9: (Left) Illustration of the ensquared energy (EE) concept. The EE is the
integral of the PSF over a square centered on the PSF. (Right) EE at 2.2 µm versus
the size of the square (in arcsec) for a telescope of D = 4 m obtained with numerical
simulations. Turbulence strength: s = 0.73”.

has been adopted to quantify the energy concentrating capabilities of a given AO
system. Figure 1.9(right) shows examples of EE curves at 2.2 µm as a function
of the size of the square. The EE curve of the AO-corrected PSF lies between the
EE curves of the turbulence and the diffraction-limited PSFs. For a given square
size x, the performance of an AO system is usually quoted in terms of the gain
in EE, which is defined as:

GEEx(α) =
EEx(α)
EEtur

x

(1.71)

where EEtur
x denotes the EE in a square of size x of the turbulence PSF and

similarly, EEx(α) denotes the EE in a square of size x of the AO-corrected PSF
in direction α.

1.2.7 Single-conjugate adaptive optics (SCAO)

Single-conjugate adaptive optics (SCAO) systems consist of a single deformable mirror
—in general conjugated to the telescope pupil— and a single wavefront sensor, as
depicted in figure 1.10. Although the concept of (single-conjugate) adaptive optics was
first proposed in 1953 by H. W. Babcock [9], the first astronomical SCAO prototype
system —the COME-ON project [129]— saw its first light in 1989. This prototype
system consisted of a 5x5 subapertures SH-WFS and a 19-actuator SAM DM. Since
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Figure 1.10: Single-conjugate adaptive optics (SCAO) configuration. (Courtesy: E.
Marchetti).

then, many 4-m, 8-m, and 10-m class astronomical telescopes have been equipped with
SCAO systems, some of them based on a SH-WFS and a SAM DM [13, 130, 151], and
others based on a curvature WFS and a bimorph DM [61, 5, 138]. As we will review in
the following sections, SCAO correction can provide near-diffraction-limited resolution,
but some important limitations do exist, the main one being the anisoplanatism.

1.2.7.1 SCAO-corrected PSF and OTF

The optical resolution attained with SCAO correction in the direction of the guide star
(GS) is close to the diffraction-limit of the telescope. As an example, figure 1.11 shows
the SCAO-corrected PSF obtained from numerical simulations of the MAD system
operating in SCAO mode (chapter 4). Note that the SCAO-corrected long-exposure
PSF is characterized by a diffraction-limited peak (FWHM ≈ λ/D) that is surrounded
by a halo whose size is less than λ/r0; the actual size depending on the degree of
the SCAO correction. The wavefront residuals that contribute to the wavefront error
(WFE) are due to the high spatial frequencies not compensated by the DM —known
as the fitting error—, and the imperfect correction of the low spatial frequencies due
to wavefront sensing errors, temporal errors, etc.
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Figure 1.11: Comparison of the diffraction-limited PSF, the long-exposure turbulence
PSF (r0 = 70 cm @ 2.2µm), and the long-exposure SCAO-corrected PSF at λ = 2.2µm
for an 8-m telescope. The SCAO system simulated is the MAD system operating in
SCAO mode.
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Figure 1.12: Comparison of the diffraction-limited OTF, long-exposure turbulence OTF
(r0 = 70 cm @ 2.2µm), and SCAO-corrected OTF at λ = 2.2µm for an 8-m telescope.
f = |f | is the modulus of the spatial frequency vector (rad−1). The SCAO system
simulated is the MAD system operating in SCAO mode.
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On the other hand, the SCAO-corrected long-exposure OTF can be approximated
by a similar expression to equation 1.26 [15, 152]:

OTF(f) = exp
[
−1

2
Dϕres(λf)

]
OTFtel(f) , (1.72)

where in this case Dϕres is a structure function characterizing ϕres, the residual phase
after SCAO correction (equation 1.47). Figure 1.12 shows the long-exposure OTFs
associated with the PSFs shown in figure 1.11. Note that at low spatial frequencies
the SCAO-corrected OTF is characterized by a less steep drop-off with respect to
the turbulence OTF. Also, note that higher spatial frequencies are present up to the
diffraction limit D/λ, but they are attenuated with respect to the diffraction-limited
OTF. The level of the attenuation of the higher spatial frequencies in the SCAO-
corrected OTF is related to the degree of the SCAO correction. It can be shown that
the SCAO-corrected OTF at high frequencies saturates to [126]:

OTF(fhigh) ≈ exp
{
− [WFE]2

}
OTFtel(fhigh) . (1.73)

where WFE is the wavefront error (eq. 1.67).

1.2.7.2 Anisoplanatism

The main limitation of SCAO systems is the anisoplanatism. As illustrated in fig-
ure 1.13, in most astronomical applications the GS and the astronomical object of
interest are not the same. Hence, the wavefront coming from the GS and the wave-
front coming from the object of interest will traverse the atmosphere through different
paths separated by an angle θ. Because the atmospheric turbulence is distributed in
the volume above the telescope, the wavefront perturbations will be different for the
two paths. This phenomenon is known as anisoplanatism.

The isoplanatic angle θ0 is defined as the angular separation from the GS for which
the mean-square wavefront error between the two paths is equal to 1 rad2 [64]. The
isoplanatic angle θ0 is given by [39]:

θ0 =

[
2.91

(
2π

λ

)2

[sec(α)]8/3

∫
C2

n(h)h5/3dh

]−3/5

(1.74)

= 0.314 cos(α)
r0

h̄
(1.75)
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Figure 1.13: Illustration of the anisoplanatism effect in adaptive optics. (Courtesy: E.
Marchetti).

where h̄ is the mean turbulence altitude, defined as [64]:

h̄ =

(∫
C2

n(h)h5/3dh∫
C2

n(h) dh

)3/5

. (1.76)

The atmospheric turbulence compensation delivered by a SCAO system is only efficient
within a FoV equal to ≈ 2θ0 around the GS. This FoV is known as the isoplanatic patch.
Similarly to the Fried parameter r0 (eq. 1.16), the isoplanatic angle θ0 is also wavelength
dependent (∝ λ6/5). The isoplanatic patch varies from a few arcsec in the visible, to a
few tens of arcsec in the near infrared.

1.2.7.3 Limiting magnitude, sky coverage and laser guide stars

In order to be able to measure the wavefront perturbations introduced by atmospheric
turbulence with the required accuracy (¿ λ), the signal-to-noise ratio (SNR) on the
WFS measurements should be kept as high as possible. This implies that bright stars7

7The brightness of stars are expressed in terms of magnitudes; a logarithmic scale in which an
increase of one magnitude corresponds to a decrease in brightness by a factor of 1001/5.
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should be used for wavefront sensing. The magnitude of the faintest GS that could
be used for a given SCAO system is known as the limiting magnitude. The limiting
magnitude is determined by the level of performance sought, and it depends on different
system parameters, e.g. the throughput of the optics, the noise introduced by the WFS
detector, etc. For example, for the NAOS SCAO system, the limiting magnitude is
MV ≈ 17 [130].

The probability of finding a NGS brighter than a given limiting magnitude and
within a given field of view (FoV) is known as the sky coverage. Clearly, those areas in
the sky where no suitable GSs are found cannot be observed with adaptive optics. The
sky coverage offered by SCAO systems is quite limited because a suitable GS must be
found within the isoplanatic patch around the object of interest.

In order to overcome this limitation, the concept of laser guide star (LGS) was
proposed by Foy & Labeyrie [34]. It consists in creating an artificial star by projecting
a laser beam on the sky. Two LGS technologies have been demonstrated: Rayleigh and
sodium LGSs [105]. LGSs can boost the sky coverage because a LGS can be conve-
niently positioned within the isoplanatic patch of the object of interest. Furthermore,
in principle the right brightness can be obtained by controlling the power of the laser.

There are nevertheless several limitations associated with LGSs. First, since the
LGS spot is produced at a finite altitude (≈ 15 km for Rayleigh LGSs and ≈ 90 km for
sodium LGSs), the LGS wavefront propagates down to the telescope pupil in a conical
fashion. As a result, the atmospheric turbulence volume probed by the LGS wavefront
is not exactly the same as the one traversed by the wavefront coming from the object of
interest. This effect is known as the cone effect or focal anisoplanatism [34]. Another
important limitation of LGSs is the tilt indetermination [121]. Indeed, since the LGS
beam propagates upwards and downwards through the same atmospheric path, the spot
appears to be fixed as seen from the launching telescope. This means that wavefront
tilt cannot be estimated from the LGS and, in consequence, a natural GS has to be
used to sense tip/tilt.

In this work we will only study the case of AO systems based on natural guide stars.
Therefore, we will not discuss further the particularities associated with LGSs.

1.2.8 Multi-conjugate adaptive optics (MCAO)

As discussed in section 1.2.7.2, SCAO correction is only efficient in a very tiny FoV
—known as the isoplanatic patch— due to the fact that the atmospheric turbulence is
distributed in altitude. The concept of multi-conjugate adaptive optics (MCAO) [26, 11]
was proposed to overcome this limitation and provide high-resolution correction in a
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larger FoV (1′ to 2′ FoV). In order to achieve this, several deformable mirrors conjugated
at different altitudes are required to compensate for the phase perturbations introduced
by different turbulent layers. MCAO compensation allows to increase the effective
isoplanatic patch, and therefore, the corrected FoV. Tokovinin et. al. [146] derived a
generalization of the isoplanatic angle θ0 (eq. 1.74) for the case of MCAO, denoted as
θM , and given by:

θM =

[
2.91

(
2π

λ

)2

[sec(α)]8/3

∫
C2

n(h)FM (h)dh

]−3/5

. (1.77)

where FM (h) is a function of the number of the DMs and their conjugation altitudes.
M. Le Louarn et. al. [87] showed that with only 2 to 3 DMs conjugated to the dominant
turbulent layers —which can be identified from the C2

n(h) profile characterization of
a given observatory (section 1.1.2.1)— are enough to increase the effective isoplanatic
angle θM to ≈1’ in the visible, and ≈2’ in the near-infrared. Furthermore, simulations
studies [42, 123] have also shown that the loss in performance due to the misconjugation
of the DMs with respect to the dominant turbulent layers is not dramatic (only a few
percent in average Strehl ratio). The important conclusion from all these studies is
that it is sufficient to design MCAO systems with 2 or 3 DMs in order to obtain near-
diffraction-limited correction in a large (1’ to 2’) FoV for the current 8m/10m-class
telescopes.

MCAO systems also require to have several WFSs coupled to GSs in different direc-
tions {α} within the FoV of interest in order to probe a larger portion of the turbulent
volume. Two wavefront sensing strategies have been proposed so far for MCAO, known
as star-oriented and layer-oriented (figure 1.14).

1.2.8.1 Star-oriented wavefront sensing

The star-oriented approach was originally proposed by M. Tallon & R. Foy [139] as a
generalization to MCAO of the wavefront sensing strategy followed in SCAO (figure
1.10). Recall that in SCAO there is a single WFS coupled to a GS located in direction
α that measures the resultant phase perturbation in the telescope pupil integrated
along the line of sight in direction α. In star-oriented MCAO, a larger portion of the
turbulent volume can be probed by means of several WFSs each one of them coupled
to a different GS in the FoV so that each WFS measures the resultant phase in the
telescope pupil integrated along a different line of sight. The star-oriented approach
can be implemented with any WFSs, e.g. Shack-Hartmann WFSs or pyramid WFSs.
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Figure 1.14: Schematic representation of MCAO system configurations. (Left) MCAO
based on the star-oriented wavefront sensing strategy. (Right) MCAO based on the
layer-oriented wavefront sensing strategy. (Courtesy: E. Marchetti).

As shown in figure 1.14(left), the WFSs measurements are then delivered to the
wavefront controller (WFC) which, in turn, computes the commands that drive the
deformable mirrors (DMs).

1.2.8.2 Layer-oriented wavefront sensing

The layer-oriented approach was proposed by R. Ragazzoni et. al. [116]. It is referred
to as layer-oriented because the goal is to try to measure directly the phase pertur-
bations introduced by some particular turbulent layers as opposed to the star-oriented
approach, in which the phase perturbation that is measured is the one introduced by
the whole turbulent volume integrated along different lines of sight.

In the layer-oriented approach there is a WFS detector conjugated to each of the
turbulent layers of interest. For instance, in figure 1.14(right) there are two WFS
detectors —labelled as WFS1 and WFS2— which are conjugated to the high-altitude
turbulent layer and the ground turbulent layer, respectively. The deformable mirrors
are also conjugated to the same altitudes as the WFS detectors. In principle, it is
possible to establish a control loop for each WFS/DM pair conjugated to the same
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altitude, as shown in figure 1.14(right).

Note that the light of the different GSs needs to be combined on the WFS detec-
tors in order to image the turbulent layers of interest. Originally, R. Ragazzoni et. al.
[116] proposed to use multi-pyramid WFSs to perform the optical co-addition of the
light, but in principle it is also possible to combine star-oriented WFS measurements
numerically in a computer to render the same kind of information [12]. The optical co-
addition has the advantage of increasing the signal-to-noise ratio (SNR) of the WFSs
measurements, which is an important aspect in particular when working with noisy
WFSs detectors [12]. On the other hand, if there is a large difference in magnitude be-
tween the GSs, the optical co-addition of the light will intrinsically give more weight to
the information coming from the brightest GSs, leading to a partial loss of information
coming from the fainter GSs. T. Fusco et. al. [48] have studied different approaches to
optimize both star-oriented and layer-oriented wavefront sensing strategies in order to
cope with differences in GS magnitudes, WFS measurement noise, etc.

1.2.8.3 Current projects in MCAO

In the last few years, several laboratories in the world have been involved in the ex-
perimental validation of the MCAO concept. Both the increase in the effective iso-
planatic angle using several DMs, and the possibility of estimating the turbulence
volume using several WFSs have been recently validated experimentally using MCAO
test-beds [73, 58, 93]. The feasibility of estimating the turbulence volume has also been
validated on the sky [118]. As part of my PhD training, I had the opportunity to partic-
ipate in the experimental characterization and testing of the multi-conjugate adaptive
optics demonstrator (MAD) [93]. Chapter 4 is dedicated to the experiments carried
out with MAD during my internship at the European Southern Observatory (ESO).

Probably the most ambitious MCAO project are the ones being currently developed
for the Gemini-South 8-m telescope [30], and the Large Binocular Telescope (LBT) [51].
The Gemini MCAO system comprises 5 SH-WFSs coupled to sodium LGSs, plus 3 ad-
ditional SH-WFSs each one coupled to a NGS required to recover tip-tilt information.
Wavefront correction will be done with 3 DMs conjugated to 0, 4.5, and 9.0 km height.
The LBT MCAO system is a layer-oriented MCAO system using a multi-pyramid WFS.
Wavefront correction will be done with 2 DMs, one of them being a large secondary
deformable mirror. These MCAO systems will provide a near-diffraction-limited cor-
rection in a large (1’ to 2’) FoV.
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Figure 1.15: Ground layer adaptive optics (GLAO) configuration. (Courtesy: E.
Marchetti).

1.2.9 Ground-layer adaptive optics (GLAO)

As discussed in section 1.1.2.1, about 60% of the turbulence strength is concentrated in
the first few kilometers above the telescope. This fact inspired the concept of ground-
layer adaptive optics (GLAO) [120]. The goal of a GLAO system is to compensate for
the ground turbulent layer by using a single DM conjugated to a low altitude. From
the system point of view, a GLAO system can be seen as a simplified MCAO system.
If only the ground turbulent layer is compensated for, a quite uniform correction in a
wide FoV can be achieved [120]. It is important to emphasize that, as opposed to the
case of MCAO, the goal of GLAO is not to attain a near-diffraction-limited correction
but to simply reduce and stabilize the seeing over a wide FoV [66].

Similarly to the MCAO case, in order to measure the wavefront perturbation intro-
duced by the ground turbulent layer, it is required to have several wavefront sensors
coupled to different GSs distributed in the FoV, as illustrated in figure 1.15. Note that
all WFSs will measure the contribution of the ground turbulent layer, but also each
WFS (coupled to a GS in direction α) will measure the contributions of the higher
turbulent layers in the corresponding direction α. In principle, the contributions of the
higher-altitude layers can be averaged out by simply averaging the wavefronts measured
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by all WFSs, as long as the number of WFSs is large [98]. A. Tokovinin [144] has shown
that the uniformity of the correction in the whole FoV can be maximized if all the GSs
are located in the periphery of the FoV. Clearly, this condition can be easily satisfied
when using LGSs.

The gain in ensquared energy (GEE) (section 1.2.6) has become the standard metric
to evaluate the performance of GLAO systems. At ESO, there are currently a couple
of GLAO systems under development for the 8-m Very Large Telescope (VLT) [66].
These GLAO systems are based on a large secondary deformable mirror for wavefront
correction, and 4 SH-WFSs coupled to sodium LGSs positioned in the periphery of the
FoV for wavefront sensing. Simulation results predict that these GLAO systems will
provide a uniform gain of GEEx ≈ 2 at both visible (x = 0.2′′, corrected FoV≈ 4′) and
near-infrared (x = 0.1′′, corrected FoV≈ 10′) wavelengths [85, 86].
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Chapter 2

Wavefront reconstruction in

MCAO

2.1 Introduction

In this chapter we will study the problem of wavefront reconstruction —or phase
estimation— in star-oriented MCAO (section 1.2.8.1). The main contribution of this
chapter is the characterization of the propagation of the remaining error —also known
as generalized aliasing— in MCAO systems.

We will follow the traditional approach to study the problem of wavefront recon-
struction by considering an open-loop and static MCAO configuration. That is, we
will consider that the wavefront sensors (WFSs) measure directly the phase perturba-
tions introduced by the atmospheric turbulence, and no temporal considerations will
be taken into account.

The problem of wavefront reconstruction in MCAO can be rigorously described
within the formalism of inverse problems [62]. Within this formalism, it is first required
to formulate what is known as the direct problem, which is basically a physical model
of the variable of interest and of the process we are using to measure it. Then, the
inverse problem consists in finding a method to estimate the variable of interest from
the available measurements.

Figure 2.1 shows a representation of the wavefront reconstruction problem in MCAO,
showing both the direct problem and the inverse problem associated with it. The direct
problem involves the modelling of the phase perturbations introduced by the turbulence
volume ϕtur(r) and also the modelling of how the WFSs are able to measure them. On
the other hand, the inverse problem involves the estimation of the phase perturbations

69
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Figure 2.1: Illustration of the direct problem and the inverse problem of wavefront
reconstruction in MCAO.

introduced by the turbulence volume from the WFSs measurements.

2.2 The Direct Problem

Figure 2.2 shows a schematic representation of the turbulence volume and a star-
oriented MCAO system. We will consider an MCAO system with NGS wavefront
sensors each one coupled to a different guide star in the direction denoted by αk

(k = {1 . . . NGS}).
In star-oriented MCAO, each WFS measures the resultant phase in the telescope

pupil. In the near-field approximation, from equation 1.13, the resultant phase per-
turbation in the telescope pupil for the WFS looking in the direction αk —denoted as
φtur(r,αk)— can be related to the phase perturbations introduced by the turbulence
volume ϕtur by:

φtur(r,αk) =
∫ ∞

0
ϕtur(r + hαk) dh , (2.1)

where r denotes the position vector in the telescope pupil. Furthermore, as discussed
in section 1.1.2.1, the continuous turbulence volume can be approximated by a set of
thin turbulence layers. As shown in figure 2.2, we will consider that the atmospheric
volume is composed of NL thin turbulent layers (j = {1 . . . NL}). Therefore, we can
rewrite equation 2.1 as:

φtur(r, αk) ≈
N

L∑

j=1

ϕ
Lj

tur(r + hjαk) (2.2)

where ϕ
Lj

tur is the phase perturbation associated with the thin turbulent layer Lj located
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Figure 2.2: Representation of the turbulence volume comprising NL thin turbulent
layers, and a star-oriented MCAO system comprising NGS wavefront sensors each one
of them coupled to a different guide star in the direction denoted by αk, and NDM

deformable mirrors.

at altitude hj . Equation 2.2 represents the basic building block in the modelling of the
direct problem in MCAO. We will rather continue the formulation of the direct problem
using matrix notation, as presented in section 2.2.1.

2.2.1 Matrix formulation

T. Fusco [42] developed a matrix formulation for the problem of wavefront reconstruc-
tion in MCAO. In this section we will review this formulation and later we will extend
it in order to be able to characterize the generalized aliasing in MCAO.

In this formulation, all phase functions are represented by their associated vectors
of Zernike coefficients (section 1.1.5). The telescope pupil diameter is denoted by D

and the maximal field-of-view (FoV) angle is denoted by αmax = ‖αmax‖.
We will denote as ϕ

Lj

tur the vector containing the Zernike coefficients of the phase
perturbation associated with the turbulent layer Lj located at altitude hj . The Zernike
basis for the Lj layer is defined on the metapupil of diameter Dj (figure 2.3):

Dj = D + 2hjαmax . (2.3)
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Figure 2.3: Illustration of the metapupil associated with layer Lj at height hj . The
WFS looking at direction αk sees the footprint of diameter D centered on hjαk.

Note that ϕ
Lj

tur is an infinite-dimensional vector. We will denote as Ej the infinite-
dimensional phase space defined in the metapupil Dj . We can now define a column
vector ϕtur concatenanting the vectors of Zernike coefficients of all the NL turbulent
layers, namely1:

ϕtur =




ϕ
L1
tur
...

ϕ
Lj

tur
...

ϕ
LN

L
tur




. (2.4)

We can also define a turbulence volume phase space —denoted as EV — formed by the
NL infinite-dimensional phase spaces {Ej} each one of them defined in its corresponding
metapupil Dj . Note that the vector ϕtur represents the associated coordinates vector
of EV .

In star-oriented MCAO, each WFS measures the resultant turbulent phase in the
telescope pupil in the direction αk. For any turbulent layer in altitude (hj 6= 0) the
WFS will only see a portion of size D —known as the footprint— as shown in figure
2.3. According to equation 2.2, the resultant turbulent phase in the telescope pupil
in the direction αk is the sum of NL footprints. In matrix form, equation 2.2 can be

1To ease the writing within a paragraph the same column vector will be expressed as ϕtur =

[ϕ
L1
tur; · · · ; ϕ

Lj
tur; · · · ; ϕ

LN
L

tur ].



2.2. THE DIRECT PROBLEM 73

written as:
φαk

tur = ML
αk

ϕtur (2.5)

where the vector φαk
tur contains the Zernike coefficients of the resultant turbulent phase

in the telescope pupil in the direction αk. The matrix ML
αk

represents the sum of
the footprints in direction αk. It can be constructed as a meta-matrix containing NL

matrices:
ML

αk
=

[
ML1

αk
· · ·MLj

αk · · ·M
LNL
αk

]
(2.6)

in which the matrix M
Lj
αk relates the Zernike polynomials defined in the telescope pupil

D with the ones defined on the metapupil Dj . The qth-column of M
Lj
αk is associated

with the qth Zernike (Zq) polynomial defined in Dj , and it contains the modal expansion
of Zq(r + hjαk) —i.e. the portion of Zq delimited by the footprint centered on hjαk

(figure 2.3)— onto the Zernikes {Zp(r)}2≤p≤∞ defined on the telescope pupil D. Note
that in principle there is an infinite number (2 ≤ p ≤ ∞) of Zernike coefficients to
compute. However, R. Ragazzoni et. al. [117] showed that for the qth Zernike defined
in Dj , only the coefficients of the Zernikes {Zp(r)}2≤p≤q are actually non-zero. This
fact will be useful in the formulation of the approximate direct problem described in
section 2.2.2.

We can now also define a meta-matrix, ML
α, that computes the resultant phases in

the pupil plane for all the NGS directions. This meta-matrix can be constructed as:

ML
α =

[(
ML

α1

)T · · · (ML
αk

)T · · ·
(
ML

αN
GS

)T
]T

. (2.7)

The resultant turbulent phase in the telescope pupil for all directions can be written
as the column vector:

φtur =




φα1
tur
...

φαk
tur
...

φ
αNGS
tur




, (2.8)

and the linear relationship between the vectors φtur and ϕtur can be stated simply as:

φtur = ML
αϕtur . (2.9)

Let us now proceed with the matrix notation for the WFSs response. The measurement
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vector produced by the kth WFS is given by (eq. 1.53):

sk = Dkφ
αk
tur + wk (2.10)

where Dk is the kth-WFS matrix and wk is the measurement noise vector. In this
context the columns of the matrix Dk describe the response of the WFS to Zernike
polynomials. Note that in principle this matrix has an infinite number of columns, but
a finite number of rows equal to the number of WFS measurements. We will define
a block-diagonal meta-matrix D containing the NGS WFS matrices. Then, defining
also the column vectors s = [s1; · · · ; sk; · · · ; sN

GS
] and w = [w1; · · · ;wk; · · · ;wN

GS
], the

linear model that takes into account all the NGS WFSs is simply written as:

s = Dφtur + w

= DML
αϕtur + w . (2.11)

Equation 2.11 summarizes the direct problem in MCAO. It states the linear relationship
that exists between the available information —i.e. the wavefront sensor measurements
s— and the variable of interest —i.e. the turbulence volume represented by ϕtur. The
search for the inverse relationship leads to the corresponding inverse problem of wave-
front reconstruction or phase estimation in MCAO. That is, the problem of estimating
the vector ϕtur from the WFSs measurements. However, in practice it is not possible
to handle infinite-dimensional vectors and matrices. Therefore, we will have to limit
the modal representation of the turbulence volume to a finite number of Zernike modes
per layer, leading to the formulation of an approximate direct problem. Since most
of the turbulence energy is concentrated on the low spatial frequencies (figure 1.5) a
reasonable choice is to keep the low order Zernikes in the modelling of the approximate
direct problem. We will describe in section 2.2.2 the formulation of the approximate
direct problem in MCAO.

2.2.2 Approximate direct problem

We will start the formulation of the approximate direct problem by splitting the infinite-
dimensional vector ϕtur —defined in equation 2.4— in two components, denoted as
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ϕtur‖ and ϕtur⊥ :

ϕtur‖ =




ϕ
L1
tur‖
...

ϕ
Lj

tur‖
...

ϕ
LN

L
tur‖




, ϕtur⊥ =




ϕ
L1
tur⊥
...

ϕ
Lj

tur⊥
...

ϕ
LN

L
tur⊥




. (2.12)

For each turbulent layer Lj , the vector ϕ
Lj

tur‖ will contain a finite number of Zernike

coefficients, namely the first n
Lj

mod Zernike modes (excluding piston Z1), and the vector
ϕ

Lj

tur⊥ will contain the rest of the Zernike coefficients not considered in ϕ
Lj

tur‖ , namely

the Zernikes from n
Lj

mod + 1 to ∞. The finite number of Zernike coefficients contained
in ϕtur‖ are the ones that we will seek to estimate when solving the inverse problem.

Within the formalism of linear algebra, we can define two phase spaces MV and
M⊥

V as the subspaces of EV spanned by the Zernike polynomials whose coefficients are
{ϕtur‖} and {ϕtur⊥} respectively. By construction, M⊥

V is the orthogonal complement
of MV , so that EV = MV ⊕ M⊥

V . Note that this formalism is similar to the one
introduced in section 1.2.1.2 for the case of a deformable mirror.

• How many Zernike modes shall we take into account for each layer Lj? Let
us consider that for each layer Lj we seek to estimate the first n

Lj

mod Zernikes
(excluding piston Z1) up to radial order nLj . Then, the maximum Zernike number
taken into account for layer Lj is:

n
Lj

mod =

(
nLj + 1

) (
nLj + 2

)

2
. (2.13)

Recall from equation 1.33 that limiting the estimation to a number of Zernikes
up to a maximum radial order is equivalent to limiting the estimation up to a
maximum spatial frequency. We will in general choose the values of nLj so that
the maximum spatial frequency estimated in all layers is the same. Then, from
equation 1.33, and for an arbitrarily chosen nL1 , the values of nLj for the other
layers will be set to:

nLj ≈ Dj

D1

(
nL1 + 1

)− 1 , (2.14)

where D1 and Dj are the sizes of the metapupils of the first and the jth layer.

We will now require to split accordingly the matrix ML
α. Let us start with matrix
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MLj
αk (see equation 2.6). Recall that this matrix relates the Zernike coefficients of

the resultant phase in the telescope pupil in direction αk with the Zernike coefficients
associated with layer Lj . This matrix can be simply partitioned as:

MLj
αk =

[
MLj

αk‖M
Lj
αk⊥

]
(2.15)

where MLj
αk‖ contains only n

Lj

mod − 1 columns associated with the first n
Lj

mod Zernikes

(excluding piston Z1) of layer Lj , and MLj
αk⊥ contains an infinite number of columns

associated with Zernikes n
Lj

mod + 1 to ∞.

Similarly to equation 2.6, we can now define the meta-matrices that represent the
sum of the contributions of the NL layers in direction αk:

ML
αk‖ =

[
ML1

αk‖ · · ·M
Lj

αk‖ · · ·M
LNL

αk‖
]

(2.16)

ML
αk⊥ =

[
ML1

αk⊥ · · ·M
Lj

αk⊥ · · ·M
LNL
αk⊥

]
(2.17)

and, similarly to equation 2.7, we can also define the meta-matrices that take into
account the NGS wavefront sensing directions:

ML
α‖ =

[(
ML

α1‖
)T
· · ·

(
ML

αk‖
)T
· · ·

(
ML

αNGS ‖

)T
]T

(2.18)

ML
α⊥ =

[(
ML

α1⊥
)T · · ·

(
ML

αk⊥
)T
· · ·

(
ML

αNGS⊥

)T
]T

. (2.19)

• What is the size of the matrix ML
α‖? . Recalling the discussion in the paragraph

below equation 2.6, it is important to realize that since we are considering a
limited number of Zernikes representing layer Lj (i.e. up to Zernike number n

Lj

mod),
then the number of non-zero Zernike coefficients in the telescope pupil (i.e. the
coefficients of {Zp(r)}2≤p≤pmax) will be equal to pmax = n

Lj

mod.

Since each layer Lj will be represented with a different number of Zernikes, we will
in general choose the total number of Zernike coefficients defined in the telescope
pupil to be:

pαk
= max

j

{
n

Lj

mod

}
. (2.20)

In this case, each matrix ML
αk‖ will have a size of (pαk

− 1) x nmod, where:

nmod =
∑

j

(
n

Lj

mod − 1
)

. (2.21)
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Then, it follows that the size of the matrix ML
α‖ will be NGS (pαk

− 1) x nmod.
In practice, the matrix ML

α‖ can be computed following numerical or analytical
methods [117, 147, 81].

Let us now proceed with our formulation. Taking into account equations 2.12, 2.18,
and 2.19, equation 2.11 can be rewritten as:

s = DML
α‖ϕtur‖ + DML

α⊥ϕtur⊥ + w . (2.22)

The matrix DML
α‖ represents the mathematical model of the approximate direct prob-

lem. We will call it the tomographic interaction matrix, and we will denote as:

H
4
= DML

α‖ . (2.23)

The matrix H provides a direct link between the phase space MV we want to estimate
and the WFSs measurements s. In principle, the solution to the inverse problem in
MCAO is attained by inverting the tomographic interaction matrix H. However, the
inverse of H is not straightforward to compute, as we will discuss in detail in section 2.3.

The second term in equation 2.22 quantifies the effect on the WFS measurements
of those (higher-order) turbulence modes not taken into account in our approximate
model H. The matrix DML

α⊥ will be referred to as the aliasing interaction matrix and
will be denoted as:

H⊥
4
= DML

α⊥ . (2.24)

We will use this matrix to characterize the generalized aliasing in MCAO. Finally,
equation 2.22 can be rewritten as:

s = Hϕtur‖ + H⊥ϕtur⊥ + w . (2.25)

2.2.3 Example case

Let us consider an example of the formulation of the approximate direct problem in
MCAO. In particular, we will introduce in this section an example of the matrix H =
DML

α‖. We will consider that the turbulence volume comprises only two turbulent
layers located at h1 = 0 km and h2 = 8.5 km in altitude. The infinite-dimensional
column vector representing the turbulence volume is expressed as ϕtur = [ϕL1

tur; ϕ
L2
tur].

Let us consider a telescope whose diameter is D = 8 m without central occultation,
and a FoV of 1’ (αmax = 30 arcsec). Then, from equation 2.3, the diameters of the
metapupils are D1 = 8 m and D2 = 10.5 m.
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Figure 2.4: (Left) Illustration of a guide star asterism. The guide stars are located on
the vertices of an equilateral triangle inscribed in a circle whose diameter is equal to
the considered FoV. (Right) Illustration of the footprints within a metapupil at an
altitude of 8.5 km for a FoV of 1 arcmin. The diameter of the footprints is 8 m and
the diameter of the metapupil is 10.5 m.

We will now define the size of the finite-dimensional vector that we seek to estimate,
namely ϕtur‖ = [ϕL1

tur‖ ; ϕ
L2
tur‖ ]. Let us arbitrarily choose the first 10 radial orders for

layer L1 (nL1 = 10). Then, according to eq. 2.14, nL2 = 13. Also, according to eq.
2.13, nL1

mod = 66 and nL2
mod = 106. Finally, according to eq. 2.21, the total number of

Zernike modes sought to be estimated is:

nmod =
∑

j

(
n

Lj

mod − 1
)

= 65 + 105 = 170 . (2.26)

We will also consider an MCAO system comprising three WFSs coupled to natural
guide stars located on the vertices of an equilateral triangle inscribed in the 1’ FoV,
as illustrated in figure 2.4(left). Figure 2.4(right) shows the corresponding footprints
at h2 = 8.5 km. The column vector s representing the WFS measurements obtained
from the three directions can be expressed as s = [s1; s2; s3]. Let us also consider in
our example case that the three WFSs are idealized WFSs (section 1.2.3.2) each one of
them capable of projecting directly the resultant phase in the telescope pupil onto the
Zernike basis. Hence, each WFS delivers a vector sk containing Zernike coefficients.
Following equation 2.20, we will set each idealized WFS to measure up to Zernike
number:

pαk
= max

{
nL1

mod, n
L2
mod

}
= 106 . (2.27)
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Figure 2.5: (Left) Example of a H matrix for the geometry shown in figure 2.4 and for
a 1’ FoV. Two turbulent layers at 0 km and 8.5 km are considered, represented with a
total of 65 and 105 Zernikes respectively. Each of the three idealized WFSs measures
a total of 105 Zernikes. Then, the size of H is: number of rows=105x3=315, number
of columns=65+105=170. (Right) Eigenvalues of HTH in descending order.

Hence, the size of the vector s becomes 3x(106-1)=315. We have computed numerically
the corresponding matrix H (whose size is 315x170), and it is shown in figure 2.5(left).
Note the three meta-rows corresponding to each of the WFSs, and the two meta-columns
corresponding to the two turbulent layers.

2.3 The Inverse Problem

The inverse problem in MCAO consists in estimating the turbulence volume from the
available WFSs measurements (Figure 2.1). As we will discuss in this section, the
solution to this inverse problem is not trivial because the problem of wavefront recon-
struction (or phase estimation) in MCAO is an ill-posed problem. It does not comply
with the properties that a well-posed problem should have, namely [62]:

1. Existence of solution.

2. Uniqueness of solution.

3. Stability of solution.
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2.3.1 Existence and uniqueness of solution

We will limit our discussion in this work to the theory of linear inverse problems. In
this framework, the inverse problem can be stated as:

ϕ̂tur = Rs (2.28)

where R in adaptive optics is known as the reconstruction matrix. Then, the solution to
the inverse problem is the vector ϕ̂tur, which represents the reconstructed (or estimated)
turbulence volume. The problem now translates into finding a suitable reconstruction
matrix R that can be used to compute ϕ̂tur. In principle, the matrix R could be
computed as the matrix inverse of the tomographic interaction matrix H:

R
4
= H−1 = (DML

α)−1 . (2.29)

However, in adaptive optics the number of WFS measurements is usually greater than
the number of modes to be estimated. This implies that the system of linear equations
represented by equation 2.22 in matrix form is overdetermined, so the matrix H is not
square and its direct inverse (eq. 2.29) does not exist.

2.3.1.1 Least-squares solution

The classical approach to solve an overdetermined system of equations is given by the
least-squares (LS) estimation method. In our case, the least-squares estimate ϕ̂tur is the
one providing the best-fit in the least-squares sense to the actual WFSs measurements s,
and it can be found by minimizing the criterion:

JLS = ‖s−Hϕ̂tur‖2 . (2.30)

The minimization of JLS with respect to ϕ̂tur leads to the well-known least-squares
solution:

HTHϕ̂tur = HT s (2.31)

and the least-squares reconstruction matrix RLS that solves the equation ϕ̂tur = RLSs

is simply given by the generalized inverse of H, denoted as H†:

RLS = H†

= (HTH)−1HT . (2.32)
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Note that the matrix RLS can only be computed if the inverse of HTH exists; that
is, if the matrix HTH is not singular. This condition can be verified by means of the
singular value decomposition (SVD) of H.

2.3.1.2 Singular value decomposition

The singular value decomposition (SVD) of H can be expressed as [137]:

H = UΣVT , (2.33)

where —if H is an n by m matrix— then:

• U is an n by m unitary matrix containing the eigenvectors of HHT . Since the
matrix U is unitary then UT = U−1.

• V is an m by m unitary matrix containing the eigenvectors of HTH. Since the
matrix V is unitary then VT = V−1. We will simply refer to the eigenvectors of
HTH as the eigenmodes of H. Also, we will refer as eigenspace the vector space
generated by the eigenmodes of H.

• Σ is an m by m diagonal matrix containing the singular values of H, denoted as
{σi}.

• The eigenvalues of HTH, denoted as {λi}, are related to the singular values of
H, {σi}, simply by λi = σ2

i .

The matrix HTH is said to be singular —and hence not invertible— if at least one of
its eigenvalues is equal to zero: λi = 0.

2.3.1.3 Minimum-norm least-squares solution

Let us now express the matrix RLS in terms of the SVD decomposition of H. Sub-
stituting equation 2.33 into 2.32, and taking into account that U and V are unitary,
leads to the following expression for the least-squares reconstruction matrix:

RLS = VΣ−1UT , (2.34)

where the matrix Σ−1 is defined as the diagonal matrix whose elements are {σ−1
i }. Note

that if HTH is singular, then the matrix Σ is not inversible, and so the matrix RLS

(eq. 2.34) cannot be computed. In other words, the inverse problem does not comply
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with the property of uniqueness of solution. As we will discuss in section 2.3.1.4, this
is in general the case in adaptive optics.

The general least-squares solution ϕ̂tur that satisfies equation 2.30 can be expressed
as the sum of a particular solution ϕ̂p

tur and an homogeneous solution ϕ̂h
tur [10, Ch.1]:

ϕ̂tur = ϕ̂p
tur + c ϕ̂h

tur , (2.35)

where c is a constant that can take any value, thus leading to an infinite number of
solutions for ϕ̂tur. Within the formalism of linear algebra, the vector ϕ̂p

tur belongs to the
row-space of H and the vector ϕ̂h

tur belongs to the nullspace of H, which are orthogonal
subspaces of Rm [137]. The eigenmodes of H associated with zero eigenvalues (λi = 0)
form a basis of the nullspace of H. Note that the uniqueness of solution would be
guaranteed if the dimension of the nullspace of H were equal to zero. In this case,
there would be no zero eigenvalues and the only vector in the nullspace of H would be
the zero vector: ϕh

tur = ~0.

When the dimension of the nullspace of H is not equal to zero, the classical ap-
proach to guarantee the uniqueness of solution is to choose from all the possible general
solutions (eq. 2.35) the one that has the minimum norm. Since ϕ̂p

tur and ϕ̂h
tur are or-

thonormal vectors, the squared norm of ϕ̂tur can be expressed as [10, Ch.1]:

‖ϕ̂tur‖2 = ‖ϕ̂p
tur‖2 + c2‖ϕ̂h

tur‖2 . (2.36)

From this equation it can be seen that ‖ϕ̂tur‖2 will be a minimum if ‖ϕ̂h
tur‖2 = 0. That

is, if we choose from all the vectors in the nullspace of H the zero vector: ϕ̂h
tur = ~0.

This choice corresponds to the minimum-norm least-squares solution. In practice, the
minimum-norm least-squares reconstructor —denoted as RMNLS— can be computed
as:

RMNLS = VΣ−1
0 UT , (2.37)

where Σ−1
0 is a diagonal matrix defined as:

Σ−1
0 = diag(xi) where xi =

{
σ−1

i if σi 6= 0
0 if σi = 0

, (2.38)

where diag(xi) simply denotes a diagonal matrix whose elements are given by xi. With
the reconstruction matrix RMNLS the uniqueness of the least-squares solution is guar-
anteed.
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2.3.1.4 Unseen modes in adaptive optics

Let us now give a physical interpretation to the mathematical concepts introduced in
the previous sections. In adaptive optics, the set of eigenvalues {λi} represent the
sensitivity of the WFSs to the corresponding eigenmodes [90]. Also, each eigenmode
can be represented as a combination of NL spatial modes ϕ

Lj

tur(r) (see equation 2.2
and figure 2.2). Then, the eigenmodes associated with zero eigenvalues (λi = 0) can
be represented as a combination of spatial modes that produce a null response on the
WFSs. That is, they satisfy the equation Hϕtur = ~0, where the vector ~0 represents a
null response on the WFSs.

In adaptive optics, the dimension of the nullspace of H is in general not equal to
zero. That is, there are several other combinations of spatial modes that produce a null
response on the wavefront sensors. These spatial modes are known in adaptive optics
as the unseen modes, and the most common examples are:

- Piston mode. The piston mode Z1(r) is just a flat wavefront. It produces no
response on the wavefront sensor, and in principle, it does not degrade the image
quality in optical systems. However, if it is not filtered out in some way from
the reconstruction process, the general solution (eq. 2.35) will be of the form:
ϕ̂tur = ϕ̂p

tur + c~1, where ~1 denotes a vector of ones. If we drove a deformable
mirror to fit this solution, the dynamic range would be limited by the piston term
c~1 and eventually the DM would saturate (see section 1.2.1.1).

- Tip-tilt combinations. This is a particular unseen mode that occurs in MCAO
systems. It is illustrated in figure 2.6(left) for the simple case where only two
turbulent layers are being reconstructed. Some combinations of tip-tilt modes on
the two layers can be totally cancelled out. The resultant phase in the telescope
pupil would be equal to a piston term in any direction α. Once again, if these
unseen modes are not filtered out in some way, they will cause the DMs to waste
their dynamic range reproducing tip-tilt combinations and eventually saturate.

2.3.2 Stability of solution

The stability of the solution is the last of the three properties that a well-posed
problem should comply with. For the MCAO reconstruction problem, the solution
would be stable if for small relative variations on the WFSs measurements ‖δs‖/‖s‖
—e.g. due to measurement noise w— the resulting relative variations on the estimates
‖δϕ̂tur‖/‖ϕ̂tur‖ were also small. However, if the problem is ill-posed, the measurement
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Figure 2.6: (Left) Representation of a tip-tilt combination: a typical unseen mode in
MCAO. (Right) Illustration of the concept of a badly-seen mode in MCAO.

noise will propagate strongly through the reconstruction matrix RMNLS (eq. 2.37), and
will cause large fluctuations on the estimates. It can be shown that the maximum
relative error ‖δϕ̂tur‖/‖ϕ̂tur‖ will be bounded by [137]:

‖δϕ̂tur‖
‖ϕ̂tur‖

≤ ‖H‖‖RMNLS‖
‖δs‖
‖s‖ (2.39)

where ‖H‖ and ‖RMNLS‖ denote the spectral norms2 of the corresponding matrices,
and the constant ‖H‖‖RMNLS‖ is known as the condition number of H:

cond (H)
4
= ‖H‖‖RMNLS‖ . (2.40)

It is straightforward to show that the norm of RMNLS is equal to:

‖RMNLS‖ = σmax(RMNLS ) =
1

σmin(H)
, (2.41)

where σmin(H) denotes the minimum non-zero singular value of H. Hence, equation
2.40 can be also expressed as:

cond (H) =
σmax(H)
σmin(H)

. (2.42)

Note from equation 2.39 that large condition numbers indicate that large fluctuations on
the estimates will be expected due to the strong propagation of the measurement noise.
The matrix H is said to be badly conditioned. In general, the problem of wavefront

2The spectral norm of a matrix A is defined as its maximum singular value: ‖A‖ 4= σmax(A).
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reconstruction in MCAO using the least-squares approach is badly conditioned. This
is due to the fact that there are some eigenmodes whose singular values are not zero
but very small, σmin(H) → 0, so that the condition number becomes quite large. In
adaptive optics, the eigenmodes associated with low singular values are better known
as the badly-seen modes.

2.3.2.1 Badly-seen modes in adaptive optics

As illustrated in figure 2.6(right), a badly-seen mode is a combination of spatial modes
that produces a very small signal on the wavefront sensing directions {αk}. Note
that the resultant phase on the pupil plane for other directions (e.g. in between guide
stars) won’t be necessarily equal to zero. If these modes are not treated with caution
during the reconstruction process, they can really degrade the uniformity of the MCAO
correction in the whole field of view.

Badly-seen modes in MCAO depend on the system characteristics (e.g. number and
position of guide stars, number of reconstructed layers, etc.). For instance, adaptive op-
tics systems based on SAMs DMs and Shack-Hartmann WFSs are particularly affected
by badly-seen modes known as waffle modes, which are generated when the control
signals of adjacent actuators of the DM are equal in magnitude but with opposite
sign [126, 56].

Example. Let us consider once again the matrix H shown in figure 2.5(left). Figure
2.5(right) shows the eigenvalues of HTH. There is a total of 170 eigenmodes and they
are all displayed in figure 2.7. Note that each eigenmode can be represented with two
phase maps, one for each turbulent layer. Also note that the last two eigenmodes
(associated with zero eigenvalues) are tip-tilt combinations. Eigenmodes 154 to 168 are
related to the non-seen portions of the metapupil at 8.5 km (figure 2.4), so they have
also very low sensitivities (λi ≈ 10−4). These are the typical badly-seen modes that
arise in MCAO and that are responsible for the large condition numbers.

2.3.2.2 Conditioning of H

In this section we will study the evolution of the condition number of H as a function of
the number of estimated modes per layer, the FoV of interest, and the number of guide
stars (GSs). We will consider once again that the telescope diameter is D = 8 m without
central occultation, and that the turbulence volume comprises only two turbulent layers
located at 0 and 8.5 km respectively.
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Figure 2.7: Eigenmodes of HTH for the matrix shown in figure 2.5. The associated
eigenvalues are also shown in figure 2.5.
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Similarly to the example case in section 2.2.3, we will consider that for the first layer
L1 we seek to estimate all Zernikes (piston Z1 not included) up to radial order nL1 ,
and for the second layer L2 up to radial order nL2 . The pair of values for nL1 and nL2

will be chosen so that the maximum spatial frequency estimated in both layers is the
same. In our present case, D1 = 8 m and D2 will depend on the considered FoV (eq.
2.3). Therefore, nL2 will be scaled according to equation 2.14 for each pair {nL1 ,FoV}
considered.

Let us start our study with the 3-GSs geometry shown in figure 2.4(left), and we will
keep on working with idealized WFSs (section 1.2.3.2). Following equation 2.20, we will
set each idealized WFS to measure up to Zernike number pαk

= max{nL1
mod, n

L2
mod}. We

will study the evolution of the condition number of H as a function of the considered
FoV in which the 3 GSs are inscribed, and as a function of the number of estimated
modes. We will study the cases for nL1 = {10, 12, 16}, which correspond to a maximum
Zernike number of nL1

mod = {66, 91, 153} respectively. The considered FoVs will vary
from 20 arcsec (αmax = 10 arcsec) up to 120 arcsec (αmax = 60 arcsec). We have
computed for each pair {nL1 , FoV} the associated nL2 and pαk

, and generated the
corresponding matrix H. Figure 2.8 shows the evolution of the condition number of H

as a function of the considered pair {nL1 ,FoV}. Also, figure 2.9 shows the eigenvalues
of HTH for the cases nL1 = {10, 16} and for all the considered FoVs. Note that the
last two eigenvalues correspond to tip-tilt combinations so they are not considered in
the computation of the condition number. We can make from these plots the following
remarks:

- For a given FoV, the condition number increases with the number of Zernike
modes to be estimated. In principle, the model of the approximate direct problem
would be more accurate by considering a larger number of Zernike coefficients for
each layer; but this would worsen the conditioning of H indicating that the inverse
problem will be more difficult to solve. From the two plots of figure 2.9, and taking
a look at the extreme case of a FoV= 120 arcsec, we can see that increasing the
number of Zernikes from nL1 = 10 to nL1 = 16 will increase the proportion of
eigenmodes with low sensitivities, so there will be more modes subject to strong
noise propagation. Therefore, in practice, the number of Zernike modes per layer
taken into account in the model of the approximate direct problem cannot be
arbitrarily large.

- The condition number increases with the considered FoV. Indeed, when the FoV
increases the non-seen areas (figure 2.4(right)) increase as well, and the turbu-
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conditioning of H
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Figure 2.8: Evolution of the condition number of H as a function of the considered
FoV and the selected number of Zernike coefficients (expressed in terms of nL1). The
MCAO reconstruction problem in question is to estimate 2 turbulent layers at 0 and 8.5
km using 3 wavefront sensing directions in an equilateral triangle configuration (figure
2.4).

Eigenvalues of HTH   (nL1=10)

0 50 100 150 200 250
eigenmode number

10-20

10-15

10-10

10-5

100

N
or

m
al

iz
ed

 e
ig

en
va

lu
es

FoV=120’’
FoV=100’’
FoV=80’’
FoV=60’’
FoV=40’’
FoV=20’’

Eigenvalues of HTH   (nL1=16)

0 100 200 300 400 500 600
eigenmode number

10-20

10-15

10-10

10-5

100

N
or

m
al

iz
ed

 e
ig

en
va

lu
es

FoV=120’’
FoV=100’’
FoV=80’’
FoV=60’’
FoV=40’’
FoV=20’’

Figure 2.9: Distribution of the eigenvalues of HTH as a function of the considered FoV
and the selected number of Zernike coefficients: (Left) nL1 = 10 (Right) nL1 = 16.
The MCAO reconstruction problem in question is to estimate 2 turbulent layers at 0
and 8.5 km using 3 wavefront sensing directions in an equilateral triangle configuration.
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lence volume estimation problem becomes more difficult to solve too. If a larger
FoV were required then more WFSs could be added to provide a better sampling
of the metapupils. In order to show the improvement brought by an increase in
the number of GSs, let us consider the case where 5 wavefront sensing directions
are used. The five directions {αk} are located at the vertices of a regular pen-
tagon inscribed in a circle whose diameter is equal to the considered FoV. Figure
2.10(left) shows the evolution of the condition number of the corresponding H

as a function of the considered pair {nL1 , FoV}. Also, figure 2.10(right) shows
the eigenvalues of HTH for the case where nL1 = 16 and for different FoVs.
We can clearly appreciate that the reconstruction problem becomes better con-
ditioned with respect to the 3 GSs configuration even for the extreme case of
a FoV= 120 arcsec. We can then conclude that if a larger corrected FoV is re-
quired, then it should be considered the use of additional WFSs to better sample
the turbulence volume.

In conclusion, the number of Zernike modes per layer taken into account in the model
of the approximate direct problem (i.e. in the creation of the tomographic interaction
matrix H) should be kept low in order to prevent the condition number to reach very
large values. This allows to improve the stability of the solution in the least-squares ap-
proach. However, there will always remain some eigenmodes with low sensitivity values.
In order to effectively ensure the stability of the solution in the least-squares approach
it will be required to filter out these eigenmodes as we will discuss in section 2.3.2.3.

We should also note at this point that the limitation of the considered number
of Zernike modes per layer in principle is not necessary when using other estimation
approaches which take advantage of some statistical prior knowledge to regularize the
inverse problem and ensure the stability of the solution, as we will discuss in section 2.5.

2.3.2.3 Truncated least-squares solution

For any fixed configuration, the stability of the solution can be substantially improved
by truncating or filtering out the badly-seen modes. This can be done with the SVD
method, just as it was done for the unseen modes in equation 2.37. The truncation
is achieved by simply setting σ−1

i = 0 for all badly-seen modes inside the matrix Σ−1
0

in the MNLS reconstructor (eq. 2.37). We will denote this new matrix as Σ−1
fil . The

resulting reconstructor is known as the truncated least-squares reconstructor —denoted
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Figure 2.10: (Left) Evolution of the condition number of H. (Right) Distribution
of the eigenvalues of HTH as a function of the considered FoV for the case where
nL1 = 16. The MCAO reconstruction problem in question is to estimate 2 turbulent
layers at 0 and 8.5 km, but this time using 5 wavefront sensing directions in a regular
pentagon configuration.

as RTLS— and it can be expressed as:

RTLS = VΣ−1
filU

T . (2.43)

The main issue in computing the TLS reconstructor is to decide how many eigen-
modes need to be truncated. Let us first study the general characteristics of MCAO
eigenmodes. Le Louarn & Tallon [88] remarked that MCAO eigenmodes can be clas-
sified in even and odd modes. Even modes are characterized by deformations of the
same sign on all metapupils, so that when the footprints add up they don’t cancel each
other. Hence, even modes are characterized by high sensitivities. For example, for the
eigenmodes shown in figure 2.7, the first eigenmodes have high sensitivities associated
with them, so they are properly measured by the MCAO system. Note that they are
actually very similar to low-order Zernike polynomials.

On the other hand, odd modes are characterized by deformations of opposite signs
on the metapupils. When the footprints add up the deformations subtract each other.
Therefore, odd modes run the risk of becoming badly-seen modes. In the extreme case,
the deformations cancel out completely and the odd eigenmode becomes an unseen
mode. The border between even and odd modes is characterized by a slight change in
the slope of the eigenvalues distribution [88]. For example, in the eigenvalues distribu-
tion shown in figure 2.5 this change occurs around the eigenmode number 80.
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Taking a look at the eigenvalues distribution for the examples shown in figure 2.9,
we can see that in general the evolution in sensitivities occurs rather smoothly. Hence,
it is not trivial to tag an eigenmode as badly-seen or not. The classical approach is to
select a threshold for the eigenvalues and truncate all eigenmodes whose eigenvalues
(normalized to the maximum eigenvalue λmax) lie below this threshold. Based on this
criterion, the matrix Σ−1

fil in equation 2.43 can be expressed as:

Σ−1
fil = diag(xi) where xi =

{
σ−1

i if λi
λmax

> Λ
0 if λi

λmax
< Λ

(2.44)

where Λ is the threshold value. Note that the condition number σmax/σmin (eq. 2.42)
is effectively reduced since now σmin =

√
λmin represents the smallest non-truncated

singular value. The threshold becomes then the most important parameter that needs
to be adjusted in the least-squares reconstructor. The best or optimal threshold —
denoted as Λopt— for a given MCAO configuration will depend on the observation
conditions, the signal-to-noise ratio (SNR), etc. In section 2.4.3 we will present a
criterion that can be used to compute the optimal threshold. This criterion is based
on the minimization of the global reconstruction error. In the following section we will
describe how to evaluate the reconstruction error in MCAO.

2.4 Evaluation of the reconstruction error

We will be interested in quantifying the reconstruction error –or estimation error– for
any reconstruction matrix R. By substituting equation 2.25 in equation 2.28, the
estimate ϕ̂tur results in:

ϕ̂tur = R
(
Hϕtur‖ + H⊥ϕtur⊥ + w

)
. (2.45)

The reconstruction error, ε, is defined as the vector difference between the true tur-
bulence vector ϕtur‖ and its estimate ϕ̂tur. From equation 2.45, ε can be expressed
as:

ε = ϕ̂tur −ϕtur‖ (2.46)

= [RH− I] ϕtur‖ + RH⊥ϕtur⊥ + Rw
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where I is the identity matrix. The covariance matrix of the reconstruction error
provides a full description of the stochastic properties of ε. It can be computed as:

Cε =
〈
εεT

〉

=
〈(

[RH− I] ϕtur‖ + RH⊥ϕtur⊥ + Rw
)
×

(
[RH− I] ϕtur‖ + RH⊥ϕtur⊥ + Rw

)T
〉

(2.47)

where 〈·〉 denotes an ensemble average. Assuming that the turbulence and the mea-
surement noise are statistically uncorrelated, we can express equation 2.47 as:

Cε = R
〈
wwT

〉
RT + [RH− I]

〈
ϕtur‖ϕ

T
tur‖

〉
[RH− I]T

+ [RH⊥ ]
〈
ϕtur⊥ϕT

tur⊥

〉
[RH⊥ ]T

+ [RH− I]
〈
ϕtur‖ϕ

T
tur⊥

〉
[RH⊥ ]T

+ [RH⊥ ]
〈
ϕtur⊥ϕT

tur‖

〉
[RH− I]T (2.48)

The last two terms are negligible since they involve the correlation between low-order
and high-order turbulent modes. The other covariance matrices involved in equation
2.48 are:

Cw =
〈
wwT

〉
(2.49)

Cϕ‖ =
〈
ϕtur‖ϕ

T
tur‖

〉
(2.50)

Cϕ⊥ =
〈
ϕtur⊥ϕT

tur⊥

〉
(2.51)

Cw is the measurement noise covariance matrix. Assuming that the measurement noise
of different wavefront sensors is uncorrelated the matrix Cw becomes a block-diagonal
matrix with NGS blocks. Similarly, assuming that the turbulent layers are uncorrelated
the matrices Cϕ‖ and Cϕ⊥ become block-diagonal matrices with NL blocks. For modal
representation of the turbulence using Zernike polynomials these matrices are computed
from equations 1.34 or 1.35. Then, equation 2.48 can be rewritten as:

Cε = RCwRT

+ [RH− I]Cϕ‖ [RH− I]T

+ [RH⊥ ]Cϕ⊥ [RH⊥ ]T . (2.52)

Let us now discuss the significance of each of the three terms in equation 2.52:
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- The first term describes the propagation of the measurement noise in the recon-
struction process. Noise propagation in SCAO systems has been widely stud-
ied [128]. It has also been studied for the case of MCAO [150, 44].

- The second term of equation 2.52 describes the error related to the reconstruction
matrix. It could only be equal to zero if R ≡ (H)−1, but as we discussed in section
2.3.1 this is never possible.

- The third term of equation 2.52 describes the contribution to the reconstruction
error coming from those (high-order) turbulent modes that belong to M⊥

V . It
was originally called the remaining error by G. Dai [21] because he realized that
this error term was always present even in the case of noiseless WFSs (w = ~0).
J. P. Veran [152] called it the under-calibration error, and showed that it is a sort
of aliasing error. This error term has not been previously studied in the case of
MCAO. In the following sections we will fully characterize it. Following G. Dai,
we will refer to it as remaining error.

2.4.1 Variance distribution in eigenspace

We will be interested in expressing the reconstruction error in the eigenspace (section
2.3.1.2). In order to do this, it is important to note that the matrix V of the SVD
decomposition of H (eq. 2.33) can be seen as the transformation matrix that goes
from the eigenspace to the phase space MV . Thus, the covariance matrix of ϕ‖ in the
eigenspace —denoted3 as CMP

ϕ‖ — can be computed as:

CMP
ϕ‖

4
= VTCϕ‖V . (2.53)

Similarly, the covariance matrix of the reconstruction error ε in the eigenspace can be
computed as:

CMP
ε

4
= VTCεV . (2.54)

Substituting equation 2.52 into 2.54 leads to:

CMP
ε = CMP

w + CMP
R

+ CMP
ϕ⊥ , (2.55)

3We will denote the covariance matrices in the eigenspace with an MP, which stands for modes
propres, or eigenmodes in French.
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where:

CMP
w

4
= VTRCwRTV (2.56)

CMP
R

4
= VT [RH− I]Cϕ‖ [RH− I]T V (2.57)

CMP
ϕ⊥

4
= VTR [H⊥ ]Cϕ⊥ [H⊥ ]T RTV . (2.58)

We will be particularly interested in the diagonals of CMP
ϕ‖ , CMP

w , CMP
R

, and CMP
ϕ⊥ , be-

cause they characterize the repartition (or distribution) among the eigenmodes of the
variance of the turbulence, the measurement noise, the error related to the reconstruc-
tion matrix, and the remaining error respectively. We will refer to all these diagonals
simply as the variance distribution in the eigenspace.

2.4.2 Global reconstruction error

Let us define also a global reconstruction error as:

σ2
rec

4
=

〈
‖ε‖2

〉
=

〈∥∥∥ϕ̂tur −ϕtur‖

∥∥∥
2
〉

. (2.59)

The global reconstruction error is equivalent to the sum of the reconstruction error
variances on each layer. It can be computed from equation 2.55 as:

σ2
rec = trace {CMP

ε }
= trace {CMP

w }+ trace
{
CMP

R

}
+ trace

{
CMP

ϕ⊥

}
, (2.60)

and we will denote the separate contributions to the global reconstruction error as:

σ2
w

4
= trace {CMP

w } (2.61)

σ2
R

4
= trace

{
CMP

R

}
(2.62)

σ2
ϕ⊥

4
= trace

{
CMP

ϕ⊥

}
. (2.63)

The global reconstruction error σ2
rec is an useful scalar performance metric. As we

mentioned in section 2.3.2.3, the optimal threshold for the TLS reconstructor can be
defined as the threshold value that minimizes σ2

rec. We will illustrate this with an
example in section 2.4.4.
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2.4.3 Reconstruction error for the TLS reconstructor

In this section we will derive the reconstruction error for the TLS reconstructor. Let
us start by computing the covariance matrices CMP

w , CMP
R

, and CMP
ϕ⊥ for the TLS

reconstructor. Substituting equations 2.33 and 2.43 into equations 2.56, 2.57, and 2.58
leads to:

CMP
w =

[
Σ−1

filU
T
]
Cw

[
Σ−1

filU
T
]T

(2.64)

CMP
R

=
[
ΣΣ−1

fil − I
]
VTCϕ‖V

[
ΣΣ−1

fil − I
]

(2.65)

CMP
ϕ⊥ =

[
Σ−1

filU
T
]
[H⊥ ]Cϕ⊥ [H⊥ ]T

[
Σ−1

filU
T
]T

. (2.66)

Note that the diagonal of CMP
R

is equal to the diagonal of CMP
ϕ‖ (eq. 2.53) for all

truncated eigenmodes, and equal to zero for all the non-truncated ones. We can now
also compute the different contributions to the global reconstruction error σ2

rec for the
TLS reconstructor. Substituting equations 2.64 to 2.66 into equations 2.61 to 2.63 leads
to:

σ2
w = trace

{[
Σ−1

filU
T
]
Cw

[
Σ−1

filU
T
]T

}
(2.67)

σ2
R = trace

{[
ΣΣ−1

fil − I
]
VTCϕ‖V

[
ΣΣ−1

fil − I
]}

(2.68)

σ2
ϕ⊥ = trace

{[
Σ−1

filU
T
]
[H⊥ ]Cϕ⊥ [H⊥ ]T

[
Σ−1

filU
T
]T

}
. (2.69)

The contributions of σ2
w and σ2

R to the global reconstruction error for the TLS recon-
structor have been already studied by Fusco et. al. [45], but the contribution of σ2

ϕ⊥ has
not been studied before. We will study this in the following section with an example.

2.4.4 Example case

Let us illustrate in this section with an example case the evaluation of the reconstruction
error through the TLS reconstructor. We will consider once again that the turbulence
volume comprises only two turbulent layers located at h1 = 0 km and h2 = 8.5 km in
altitude. Also, we will consider a telescope whose diameter is D = 8 m without central
occultation. Let us consider for this example a FoV of 2’ (αmax = 60 arcsec). Then,
from equation 2.3, the diameters of the metapupils are D1 = 8 m and D2 = 12.95 m.
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We will also consider for this example an MCAO system comprising three idealized
WFSs coupled to natural guide stars located on the vertices of an equilateral triangle
(figure 2.4(left)) inscribed in the 2’ FoV.

The matrix H For the model of the approximate direct problem in this example, let
us consider the first 10 radial orders for layer L1 (nL1 = 10). Then, according to eq.
2.14, nL2 = 16. Also, according to eq. 2.13, nL1

mod = 66 and nL2
mod = 153. Hence, the

total number of Zernike modes taken into account in the creation of H is:

nmod =
∑

j

(
n

Lj

mod − 1
)

= 65 + 152 = 217 , (2.70)

which is of course also the size of the vector ϕtur‖ = [ϕL1
tur‖ ; ϕ

L2
tur‖ ] that we seek to

estimate. Following equation 2.20, we will set each idealized WFS to measure up to
Zernike number pαk

= max{nL1
mod, n

L2
mod}. Then, pαk

= 153 and the total number of
Zernike coefficients measured by the three WFSs is 3x(153-1)=456. The size of the
matrix H becomes 456x217, and it is shown in figure 2.11(b).

The matrix H⊥ The aliasing interaction matrix H⊥ has in principle an infinite
number of columns associated with the Zernike modes number n

Lj

mod +1 to ∞. In order
to evaluate analytically the quantities CMP

ϕ⊥ (eq. 2.66) or σ2
ϕ⊥ (eq. 2.63) we will have to

limit the number of Zernike modes representing in full each turbulent layer, so that we
can compute a finite-dimensional H⊥ matrix. We will choose nevertheless a relatively
large number of Zernike polynomials for each layer (with respect to the number of
Zernikes taken into account in the creation of the matrix H) in order to obtain a good
representation of the subspace M⊥

V . Furthermore, as we will describe in section 2.4.6,
the analytical results presented in this section will be shown to be in good agreement
with the results obtained with numerical simulations in which a much larger range of
higher spatial frequencies can be effectively taken into account in the evaluation of the
propagated remaining error.

Continuing with our analytical approximation, we will limit in this example the
number of Zernike modes to the first 16 radial orders (i.e. a total of 152 Zernikes) for
layer L1 and, still following equation 2.14, we will consider the first 26 radial orders
(i.e. a total of 377 Zernikes) for layer L2. Note that the turbulence volume phase
space EV —in principle infinite-dimensional— is now represented by only a total of
152 + 377 = 529 Zernike modes. The matrix DML

α in equation 2.11 for our example
becomes a finite (456x529) matrix, and it is shown in figure 2.11(a).
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DML
α H = DML

α‖ H⊥ = DML
α⊥

Figure 2.11: The matrices DML
α, H, and H⊥ for the example case described in section

2.4.4. The sizes of these matrices are 456x529, 456x217 and 456x312 respectively.

We can now consider the creation of the matrix H⊥ . The number of columns of H⊥

will be equal to 529−217 = 312. This is the total number of Zernike modes representing
the subspace M⊥

V . The size of the matrix H⊥ in this example becomes 456x312 and it
is shown in figure 2.11(c).

The covariance matrices Cw, Cϕ‖ and Cϕ⊥ The measurement noise covariance
matrix Cw (eq. 2.49) is a 456x456 diagonal matrix containing the values of the noise
variance on each Zernike coefficient. According to section 1.2.3.2, even if we are using
the so-called idealized WFSs in our example, we can take into account the character-
istic noise propagation of a realistic Shack-Hartmann WFS. In order to do this, the
measurement noise variance propagated on each Zernike coefficient will be computed
using equation 1.59, namely σ2

Zi
= pm,nσ2

n, where the value of σ2
n will be computed

from equation 1.63 for a given equivalent SNR:

σ2
n =

0.162 (2π)2

SNR

(
D

r0

)5/3 (
1
ns

)5/3

. (2.71)

It can be shown that an equivalent SH-WFS would require roughly 12x12 subapertures
(ns = 12) to be able to sample at Shannon on an 8m-telescope up to Zernike num-
ber 153. The noise covariance matrix Cw is then a diagonal matrix containing the
values of σ2

Zi
, and it depends on the chosen (D/r0) ratio and the chosen SNR.

The covariance matrices Cϕ‖ (eq. 2.50) and Cϕ⊥ (eq. 2.51) are 217x217 and 312x312
block-diagonal matrices, respectively, whose elements can be computed from equation
1.34 for Kolomogorov turbulence. These matrices also depend on the chosen (D/r0)
ratio.
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Variance distribution in eigenspace
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Figure 2.12: Example of variance distribution in the eigenspace after propagation
through the TLS reconstructor for the MCAO example described in section 2.4.4. The
turbulence (diagonal of CMP

ϕ‖ ), the remaining error (diagonal of CMP
ϕ⊥ ), and the noise

(diagonal of CMP
w ) are all shown. The turbulence strength is D/r0 = 1 and SNR = 10.

Variance distribution in eigenspace We have now all ingredients to compute the
covariance matrices CMP

ϕ‖ (eq. 2.53), CMP
w (eq. 2.64), CMP

R
(eq. 2.65), and CMP

ϕ⊥ (eq. 2.66).
Recall from section 2.4.1 that the diagonals of these covariance matrices represent the
variance distribution in the eigenspace of the turbulence, the measurement noise, the
error related to the reconstruction matrix, and the remaining error respectively, after
propagation through the TLS reconstructor.

Let us consider in our current example a normalized value of (D/r0) = 1 and a
SNR = 10. Figure 2.12 shows the corresponding variance distribution in the eigenspace.
No eigenmodes were filtered out in the matrix Σ−1

fil in order to visualize the magnitude
of the propagation of the errors onto all the eigenmodes. Note that the diagonal of
CMP

R
is in this case equal to zero, so it is not displayed in figure 2.12. As was already

discussed in reference [45], the turbulence variance is rather equally distributed among
the eigenmodes, and the measurement noise propagates strongly on the last eigenmodes
–the ones associated with low eigenvalues. What is new from this plot is the fact that
the propagated remaining error follows a similar pattern of the measurement noise. As
we will discuss in chapter 3, this will have important implications on the implementation
of modal gain optimization for MCAO.

Optimal threshold Let us compute the optimal number of truncated modes and
the associated optimal threshold Λopt for this example. Figure 2.13(left) shows the
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Figure 2.13: (Left) Evolution of the global error σ2
rec as a function of the total number of

truncated eigenmodes for the MCAO example described in section 2.4.4. The different
contributions are also shown: the remaining error σ2

ϕ⊥ , the measurement noise σ2
w, and

the reconstructor error σ2
R. (Right) Normalized eigenvalues and optimal threshold for

this MCAO configuration. The last 50 eigenmodes need to be truncated.

evolution of the global reconstruction error σ2
rec as a function of the total number of

truncated eigenmodes. The three contributions to the global error: σ2
w, σ2

R, and σ2
ϕ⊥

are also shown. When no eigenmodes are truncated σ2
ϕ⊥ and σ2

w → ∞ and σ2
R = 0.

Just after a few modes are truncated both σ2
ϕ⊥ and σ2

w drop steeply, and σ2
R increases

rather smoothly. The optimal number of truncated modes is 50 and the minimum
global reconstruction error is σ2

rec = 0.98 rad2. The plot on figure 2.13(right) shows the
distribution of normalized eigenvalues λi/λmax for this example. The optimal threshold
is Λopt ≈ 10−2, and it is also indicated in this plot. For this particular case, the last 50
eigenmodes that lie below this threshold are the ones that need to be truncated.

2.4.5 Field-of-view dependence

In section 2.3.2.2 we showed that the proportion of eigenmodes with low eigenvalues
increased with the FoV. Let us now study the field-of-view dependence of the con-
tributions to the global reconstruction error σ2

rec (eq. 2.60). Recall that the different
contributions are: the measurement noise σ2

w (eq. 2.67), the reconstructor error σ2
R

(eq. 2.68), and the remaining error σ2
ϕ⊥ (eq. 2.69). We will consider the same MCAO

configuration and turbulence model presented in section 2.4.4.
Regarding the number of modes to be considered in this study, we will consider

once again that the turbulence volume phase space EV is approximated by a total of
529 Zernike modes (152 for L1 and 377 for L2). Hence, the matrix DML

α shown in
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Figure 2.14: Contributions to the global reconstruction error σ2
rec as a function of the

FoV. The different contributions are: the remaining error σ2
ϕ⊥ , the measurement noise

σ2
w, and the reconstructor error σ2

R. The errors are computed after propagation through:
(Left) the MNLS reconstructor (i.e. only 2 truncated eigenmodes). (Right) the TLS
reconstructor with 10 truncated eigenmodes. The turbulence strength is D/r0 = 1 and
SNR = 10.

figure 2.11(a) is still valid for our current study. For the creation of the matrix H, we
will consider once again nL1 = 10 (i.e. a total of 65 Zernikes for L1), but we will scale
nL2 as a function of the FoV as it was done in section 2.3.2.2. Therefore, the size of
the matrices H and H⊥ will vary with the considered FoV. Recall that, as explained
in section 2.2.3, we proceed in this way in order to keep constant the maximum spatial
frequency taken into account in the model of the approximate direct problem for all
considered FoVs.

Figure 2.14 shows the evolution of σ2
w, σ2

R, and σ2
ϕ⊥ with respect to the considered

FoV. Two reconstruction matrices have been considered. Figure 2.14(left) shows the
error variances after the propagation through the MNLS reconstructor (i.e. only 2
eigenmodes filtered out corresponding to tip-tilt combinations), and figure 2.14(right)
shows the errors after propagation through the TLS reconstructor with 10 eigenmodes
filtered out in Σ−1

fil . From these plots we can make the following remarks:

- The terms σ2
w, σ2

R, and σ2
ϕ⊥ tend to increase as the FoV increases. Note that σ2

R

increases only slightly with the FoV, whereas σ2
w and σ2

ϕ⊥ increase substantially
(by several orders of magnitude) with the FoV, in particular beyond the 1’ FoV.

- Increasing the number of truncated modes (in this case from 2 to 10) helps re-
duce the absolute values of σ2

w and σ2
ϕ⊥ , and an optimal number of truncated



2.4. EVALUATION OF THE RECONSTRUCTION ERROR 101

modes could be determined for each FoV. Note that when the curves of σ2
w and

σ2
ϕ⊥ are above the σ2

R curve means that the performance will be limited by the
propagated errors, whereas when the σ2

R curve is above the other two means that
the performance will be limited by the uncompensated turbulence. For instance,
note that when only 10 eigenmodes are filtered out (figure 2.14(right)), and when
FoV=2’, the performance is limited by the propagated errors. More eigenmodes
would need to be filtered out and, as we determined in the previous section (see
figure 2.13), the optimal number of truncated modes for a FoV=2’ turned out to
be 50.

2.4.6 Propagation of remaining error: numerical validation

In this section we will validate our analytical model of the propagation of the remaining
error —i.e. the diagonal of CMP

ϕ⊥ (equation 2.66)— with numerical simulations in which
a much larger range of higher spatial frequencies will be effectively taken into account.

Recall that the analytical computation of CMP
ϕ⊥ involves an approximation of the

matrix H⊥ , which in theory should be infinitely large in order to take into account the
effect of all the (high-order) turbulent modes that generate the subspace M⊥

V . The
numerical validation will be based on the comparison of the statistics of the turbulence
vector estimate, ϕ̂tur, obtained from both analytical and simulation results, as we will
describe below.

Expected analytical result. Let us compute an analytical expression for the co-
variance matrix of the turbulence vector estimate in the eigenspace. Let us denote the
turbulence vector estimate in the eigenspace as ϕ̂MP

tur . Then, from equations 2.45 and
2.43, it is straightforward to show that ϕ̂MP

tur can be expressed as:

ϕ̂MP
tur =

[
Σ−1

filU
T
] (

Hϕtur‖ + H⊥ϕtur⊥ + w
)

. (2.72)

Similarly to the procedure followed in section 2.4.3 to compute the covariance matrix
of the reconstruction error in the eigenspace, CMP

ε , it can be shown that the covariance
matrix of the turbulence vector estimate in the eigenspace —denoted as CMP

ϕ̂ — is given
by:

CMP
ϕ̂ = CMP

w +
[
ΣΣ−1

fil

]
CMP

ϕ‖

[
ΣΣ−1

fil

]
+ CMP

ϕ⊥ , (2.73)

where CMP
ϕ‖ is given by equation 2.53, CMP

w by equation 2.64, and CMP
ϕ⊥ by equation 2.66.

Since we are interested in this study in the propagated remaining error, we will not
consider the covariance matrix of the measurement noise CMP

w . Also, we will not filter
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Figure 2.15: Numerical validation of the propagation of the remaining error through the
TLS reconstructor. Analytical curves: (- - -) diag{CMP

ϕ‖ }, (· · ·) diag{CMP
ϕ⊥ }. Simulation

curve: (—) diag{CMP
ϕ̂ }.

out any eigenmodes (i.e. Σ−1
fil = Σ−1) in order to be able to study the statistics of all

of them. Then, the diagonal of CMP
ϕ̂ can be simply expressed as:

diag{CMP
ϕ̂ } = diag{CMP

ϕ‖ }+ diag{CMP
ϕ⊥ } . (2.74)

We will consider in this study once again the MCAO configuration and the 2-layer
turbulence model of the example case presented in section 2.4.4. The diagonals of CMP

ϕ‖
and CMP

ϕ⊥ for this configuration were actually shown in figure 2.12 for a normalized
turbulence strength of D/r0 = 1. We will consider in this study a turbulence strength
of D/r0 = 38 @ 700 nm and the corresponding diagonals of CMP

ϕ‖ and CMP
ϕ⊥ are shown

in figure 2.15.

Simulation results. The goal of the simulation is to compute the covariance matrix
of ϕ̂MP

tur and verify that simulation results follow the analytical result of equation 2.74.

The simulation follows the block diagram presented in figure 2.1. The turbulence
is simulated with two phase screens equally weighted and positioned at 0 and 8.5 km
giving a turbulence strength of D/r0 = 38 @ 700 nm in the telescope pupil. It is
important to emphasize that the simulation of the atmospheric turbulence using phase
screens (section 1.1.7) effectively takes into account a considerably larger range of spa-
tial frequencies than the ones considered in the analytical formulation.
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At each iteration, the resultant turbulent phase in the telescope pupil for the three
GS directions {αk} is measured by idealized WFSs each one projecting the phase onto
the first 153 Zernikes. No measurement noise is added to these vectors (w = ~0). The
concatenation of these vectors forms the 456-element measurement vector s. Finally,
the turbulence vector estimate ϕ̂MP

tur is computed as:

ϕ̂MP
tur =

[
Σ−1UT

]
s . (2.75)

A total of 1024 iterations were performed and the covariance matrix of ϕ̂MP
tur was com-

puted as:
CMP

ϕ̂ =
〈
ϕ̂MP

tur (ϕ̂MP
tur )T

〉
. (2.76)

The diagonal of CMP
ϕ̂ is shown in figure 2.15. As can be seen from this plot, the diagonal

of CMP
ϕ̂ effectively follows the expected analytical result of equation 2.74. That is, for

the first eigenmodes (associated with high sensitivities) the diagonal of CMP
ϕ̂ follows the

diagonal of CMP
ϕ‖ , which is the dominant term in equation 2.74 for the first eigenmodes.

On the other hand, for the last eigenmodes (the badly- and unseen-modes) the diagonal
of CMP

ϕ̂ follows the diagonal of CMP
ϕ⊥ , which is the dominant term in equation 2.74 for

the last eigenmodes. These results validate our approximate analytical model of the
propagation of the remaining error.

2.5 Statistical estimation method

In the previous sections we have limited our discussion of wavefront reconstruction to
the methods based on the least-squares approach. The least-squares estimation method
minimizes a deterministic criterion (equation 2.30). The quantity to be estimated, ϕ̂tur,
is considered to be fixed for a given measurement vector s. However, we know that the
turbulent phase —and the WFS measurement noise w— are actually random variables
with known statistics (Chapter 1). Statistical estimation methods can then be used to
take advantage of this prior knowledge to regularize the inverse problem and improve
the solution [10, Ch.13].

In the least-squares approach, the reconstruction matrix is derived by minimizing a
fit-to-data criterion (equation 2.30). In the statistical approach, it is possible to derive
a reconstruction matrix that minimizes directly the performance metric of interest. In
MCAO, one performance metric of interest was defined in section 2.4.2: the global re-
construction error σ2

rec. Then, from equations 2.59 and 2.28, the minimization criterion
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can be expressed as:

Jtomo
4
=

〈∥∥∥ϕ̂tur −ϕtur‖

∥∥∥
2
〉

=
〈∥∥∥Rs−ϕtur‖

∥∥∥
2
〉

. (2.77)

This criterion in MCAO is known as the tomographic criterion because the minimiza-
tion of Jtomo is equivalent to the minimization of the mean-square error —or residual
variance— on each turbulence layer. Finally, minimizing Jtomo with respect to R leads
to the general expression for the minimum-mean-square error (MMSE) reconstruction
matrix:

RMMSE = 〈ϕtur‖s
T 〉〈ssT 〉 , (2.78)

where 〈ϕtur‖s
T 〉 stands for the covariance matrix between the turbulence phase and

the WFSs measurements, and 〈ssT 〉 denotes the covariance matrix of the WFSs mea-
surements. In order to find an explicit expression for RMMSE we need to introduce in
equation 2.78 the model of the direct problem which, in our case, is given by equa-
tion 2.25, namely: s = Hϕtur‖ + H⊥ϕtur⊥ + w. However, the well-known expression
for RMMSE found in the literature is actually derived by considering that the direct
problem model is approximated by:

s ≈ Hϕtur‖ + w . (2.79)

That is, the term H⊥ϕtur⊥ has not been taken into account. Substituting equation 2.79
into 2.78, and assuming that the turbulence phase vector ϕtur‖ and the WFSs mea-
surement noise vector w are uncorrelated, leads to the well-known expressions for the
MMSE reconstructor:

RMMSE =
[
HTC−1

w H + C−1
ϕ‖

]−1
HTC−1

w (2.80)

= Cϕ‖H
T

[
HCϕ‖H

T + Cw

]−1
, (2.81)

where Cw is the measurement noise covariance matrix (equation 2.49), and Cϕ‖ is the
covariance matrix of the turbulence vector ϕtur‖ (equation 2.50).

The MMSE reconstructor is also known as the maximum a-posteriori (MAP) re-
constructor because —assuming Gaussian statistics for both the turbulent phase and
the measurement noise— it is also possible to derive the same expression following a
Bayesian approach that maximizes p

(
ϕtur‖ | s

)
, that is, the a-posteriori probability on
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ϕtur‖ given the set of measurements s [43].
The MMSE reconstructor has been widely studied for the general problem of phase

estimation from WFS measurements [128]. Johnston and Welsh [69] introduced the
MMSE reconstructor for the case of MCAO. Fusco et. al. [42, 45] widely studied the
advantages of the MMSE reconstructor in MCAO and demonstrated with numerical
simulations the gain in performance brought by this reconstructor with respect to the
TLS reconstructor. In the following sections we will complement these previous studies
by studying the propagation of the remaining error through the MMSE reconstructor.

2.5.1 Evaluation of the improvement in conditioning

Let us first of all evaluate the improvement in conditioning brought by the MMSE
reconstructor. The condition number of H was defined in equation 2.40 as the product
of the spectral norms of H and RMNLS . In order to evaluate the improvement in
conditioning brought by other reconstructors, we can propose a generalization of the
definition of the condition number for any reconstruction matrix as:

cond (H,R)
4
= ‖H‖‖R‖ , (2.82)

where the norms ‖H‖ and ‖R‖ are simply computed as the maximum singular values
of H and R respectively. Then, for the case of the MMSE reconstructor, the condition
number becomes:

cond (H,RMMSE ) = ‖H‖‖RMMSE‖ . (2.83)

In section 2.3.2.2 we studied the evolution of the condition number of H as a function
of the FoV for the case of the TLS reconstructor, and the results for a 3-GS configuration
were presented in figure 2.8. Figure 2.16 shows how cond (H,RMMSE ) for the same 3-GS
configuration evolves with the FoV when using the MMSE reconstructor. We have used
the same system parameters and made the same considerations in order to compare
directly figures 2.8 and 2.16. Note that cond (H,RMMSE ) increases slightly with the
FoV and with the number of estimated modes, but in any case it remains of the same
order of magnitude. Let us compare, for instance, the extreme case where {nL1 , FoV} =
{16, 120′′}. Note from figure 2.8 that the condition number of H is cond(H) ≈ 108.
Using the MMSE reconstructor brings the conditioning down to cond (H,RMMSE ) ≈
101. Clearly, the improvement in conditioning brought by the regularized approach is
very important and, in consequence, there is no longer need to restrict the number of
estimated modes in order to improve the stability of the solution, as it was required in
the least-squares approach (section 2.3.2.2). Of course, in practice it is always required
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Figure 2.16: Evolution of cond (H,RMMSE ) as a function of the considered FoV and
the selected number of Zernike coefficients (expressed in terms of nL1). The MCAO
reconstruction problem in question is to estimate 2 turbulent layers at 0 and 8.5 km
using 3 wavefront sensing directions in an equilateral triangle configuration (figure 2.4).

to consider a finite number of estimated modes, but with the statistical approach the
number of estimated modes can be very large and can even exceed the number of
available measurements. Note that considering a larger number of estimated modes
has the advantage of effectively reducing the number of higher-order spatial modes
that contribute to the remaining error.

2.5.2 Reconstruction error for the MMSE reconstructor

In section 2.4.3 we derived the covariance matrices in the eigenspace of the contributions
to the reconstruction error for the TLS reconstructor. In this section we will derive
similar expressions for the case of the MMSE reconstructor. Let us denote as CMP

w ,
CMP

R
, and CMP

ϕ⊥ the covariance matrices of the measurement noise, the error related to
the reconstruction matrix, and the remaining error in the eigenspace after propagation
through the MMSE reconstructor. Then, from equations 2.56, 2.57, and 2.58:

CMP
w = VTRMMSECwRT

MMSE
V (2.84)

CMP
R

= VT [RMMSEH− I]Cϕ‖ [RMMSEH− I]T V (2.85)

CMP
ϕ⊥ = VTRMMSE [H⊥ ]Cϕ⊥ [H⊥ ]T RT

MMSE
V . (2.86)

Let us now study the variance distribution in the eigenspace after propagation through
the MMSE reconstructor. Recall that the variance distribution in the eigenspace after
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Figure 2.17: Example of the variance distribution in the eigenspace after propagation
through the MMSE reconstructor. The turbulence (diagonal of CMP

ϕ‖ ), the remaining
error (diagonal of CMP

ϕ⊥ ), the error related to R (diagonal of CMP
R

), and the noise (diago-
nal of CMP

w ) are shown. Summary of relevant parameters: FoV=2’, number of estimated
modes: nL1 = 10 and nL2 = 16; turbulence strength: D/r0 = 1, SNR=10.

propagation through the TLS reconstructor was given by the diagonals of the covariance
matrices CMP

ϕ‖ (eq. 2.53), CMP
w (eq. 2.64), CMP

R
(eq. 2.65), and CMP

ϕ⊥ (eq. 2.66).
For comparison purposes, let us consider once again the example case presented in

section 2.4.4. The diagonals of CMP
ϕ‖ (eq. 2.53), CMP

w (eq. 2.84), CMP
R

(eq. 2.85), and
CMP

ϕ⊥ (eq. 2.86) are shown in figure 2.17 for a turbulence strength of D/r0 = 1, and a
SNR=10. The matrices Cw and Cϕ‖ required to generate RMMSE (eq. 2.80) have been
computed for the same turbulence strength and SNR.

By comparing figures 2.12 and 2.17 we can evidence the substantial reduction in
the propagation of both the measurement noise and the remaining error when using
the MMSE reconstructor, in particular for the badly- and the unseen-modes for which
the variances are always lower than the turbulence level. On the other hand, note that
the error related to the reconstruction matrix (diagonal of CMP

R
) is not equal to zero

for any of the eigenmodes. This contrasts with the case of the TLS reconstructor, for
which the diagonal of CMP

R
(eq. 2.65) was equal to zero for all eigenmodes except for

the truncated ones.
In conclusion, the MMSE reconstructor manages to keep down the propagation of

the measurement noise and the remaining error thanks to the statistical priors used
to regularize the reconstruction process. On the other hand, the MMSE reconstructor
introduces an error (i.e. the error related to the reconstruction matrix) due to the
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Figure 2.18: Illustration of the FoV of interest {βm} where the MCAO correction
should be optimized. In this case {βm} corresponds to the center of the FoV where the
object of interest is located (Courtesy: Jean-Marc Conan).

fact that RMMSEH 6= I in equation 2.85. However, the global reconstruction error
σ2

rec = σ2
w + σ2

R + σ2
ϕ⊥ for the MMSE reconstructor is always smaller than the σ2

rec for
the TLS reconstructor. Indeed, for this example, the σ2

rec for the MMSE reconstructor
is σ2

rec = 0.71 rad2 and —as determined in section 2.4.4— the minimum σ2
rec for the TLS

reconstructor (i.e. when using the optimal threshold Λopt) is equal to σ2
rec = 0.98 rad2.

2.6 Minimum-variance reconstructor

In the previous sections we have studied the problem of wavefront reconstruction in
MCAO. That is, the problem of estimating the phase perturbations introduced by NL

turbulence layers. Once the turbulence volume ϕtur‖ has been estimated, the next
step is to compensate for it by means of NDM deformable mirrors (l = {1 . . . NDM})
conjugated at different altitudes, as depicted in figure 2.2. Note that in the general
case: NL > NDM . Also, the directions where we would like to optimize the performance
— denoted as {βm}— may not coincide with the directions of the guide stars {αk}, as
shown in figure 2.18.

T. Fusco et. al. [47] derived a reconstruction matrix —known as the minimum-
variance (MV) reconstructor— that optimizes the performance in the FoV of interest
taking into account the finite number of DMs in an MCAO system. The minimization
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criterion from which the MV reconstructor is derived, is defined as the residual variance
in the telescope pupil for the FoV of interest {βm}, and it can be expressed as:

σ2
β =

〈∫

{βm}

∫

A

[
φ̂(r, β)− φ(r, β)

]2
dr dβ

〉
(2.87)

where φ(r, β) is the resultant phase in the telescope pupil for direction β,
∫
A is an

integral over the telescope pupil,
∫
{βm} is an integral over the FoV of interest, and

〈·〉 denotes an ensemble average. Equation 2.87 can be also expressed in matrix form
as [47]:

σ2
β =

〈∫

{βm}

∥∥∥MDM
β ϕcor −ML

βϕtur‖

∥∥∥
2
dβ

〉
(2.88)

where the matrices ML
β and MDM

β can be easily interpreted from equation 2.7. They
perform the sum of the footprints in the NL turbulence layers and the NDM DMs
metapupils, respectively, for all the directions {βm}. The vector ϕtur was defined in
equation 2.4, and ϕcor is defined as a column vector containing the Zernike coefficients
of all the NDM correction phases:

ϕcor = [ϕcor,1; · · · ; ϕcor,l; · · · ; ϕcor,N
DM

] . (2.89)

The correction phase vector ϕcor is generated by applying to the DMs a command
vector u, defined as:

u = [u1; · · · ;ul; · · · ;uN
DM

] . (2.90)

According to the DM linear model presented in section 1.2.1.1, the relationship between
ϕcor and u can be expressed as:

ϕcor = Nu , (2.91)

where N is a block-diagonal matrix containing all the NDM influence matrices of the
DMs. Note that in this context the columns of the influence matrix Nl contain the
influence functions expressed in terms of their expansion in Zernike coefficients. The
command vector u that drives the DMs must be generated from the WFSs measure-
ments s by means of a reconstruction matrix RMV :

u = RMV s , (2.92)

and it is the expression for this reconstruction matrix that we seek. Substituting
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equations 2.91, 2.92, and 2.11 into 2.88 leads to:

σ2
β =

〈∫

{βm}

∥∥∥MDM
β NRMV [Hϕtur‖ + w]−ML

βϕtur‖

∥∥∥
2
dβ

〉
. (2.93)

Finally, minimizing σ2
β with respect to RMV leads to the expression for the MV recon-

struction matrix [47]:

RMV = PL
DM

Cϕ‖H
T

[
HCϕ‖H

T + Cw

]−1
, (2.94)

where the matrix PL
DM

is given by:

PL
DM

=

[∫

{βm}

(
MDM

β N
)T

MDM
β N dβ

]† [∫

{βm}

(
MDM

β N
)T

ML
β dβ

]
. (2.95)

The matrix PL
DM

is a projection matrix that weights and projects the whole turbulent
volume (NL layers) onto the NDM deformable mirrors optimizing the correction in the
FoV of interest. Finally, note from equation 2.94 that the MV reconstructor is equal
to the MMSE reconstructor (eq. 2.80) followed by the projection matrix PL

DM
. The MV

reconstructor is the most general reconstruction matrix that has been derived in the
framework of static and open-loop MCAO systems.

2.7 Conclusions

In this chapter we have studied the problem of wavefront reconstruction in MCAO using
the formalism of inverse problems theory. The severe ill-posedness of the problem of
wavefront reconstruction in MCAO —as opposed to the SCAO case— comes from the
fact that in MCAO we seek to do a tomographic reconstruction of the atmospheric
volume.

We have compared two estimation methods for solving the problem of wavefront
reconstruction in MCAO —the truncated least-squares (TLS) and the minimum mean-
square error (MMSE) estimation methods—, and we have put in evidence the improve-
ment in the stability of the solution brought by the MMSE reconstructor. In particular,
we have shown that it is possible to consider much larger FoVs and a much larger num-
ber of estimated modes when using the MMSE reconstructor without putting at risk
the stability of the solution, as it happens when using the TLS reconstructor.
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We have also evaluated the reconstruction error in MCAO when using both esti-
mation methods, and we have put in evidence the strong propagation of the remaining
error —or generalized aliasing— when using the least-squares approach. In particular,
we have shown that the propagation of the remaining error is stronger on the badly-
seen modes of the MCAO system. On the other hand, we have also shown that the
MMSE reconstructor is able to keep the propagation of the remaining error low for
all eigenmodes, including the badly-seen ones, thanks to the statistical priors on the
atmospheric turbulence taken into account in the regularization of the inverse problem.
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Chapter 3

Modal gain optimization for

MCAO

3.1 Introduction

In chapter 2 we studied the problem of wavefront reconstruction in MCAO. The at-
mospheric turbulence was regarded as being static –i.e. not evolving in time– and the
dynamics of the components of an MCAO system were not taken into account. In
this chapter we will study the problem of temporal control of an MCAO system. In
particular, we will focus on the study of modal control optimization for MCAO. Modal
control optimization for SCAO systems was introduced by Gendron et. al. [55] and
by B. Ellerbroek et. al. [31] in 1994, and it has been successfully implemented in real
systems such as NAOS (Nasmyth Adaptive Optics System [130]).

The first step in modal control is to choose a suitable modal basis. As we discussed
in section 1.1.5, phase perturbations can be expressed in terms of their modal decom-
positions in a given basis. For instance, in chapter 2 we widely used the Zernike basis
to address the problem of wavefront reconstruction. In this chapter we will continue
to use Zernike modes to decompose the perturbed wavefronts. However, the controlled
modes chosen for modal control will be the MCAO system modes. We will justify our
choice of basis in section 3.3.

As discussed by E. Gendron [55], each controlled mode will have a characteristic
signal-to-noise ratio and correlation time that will depend on the current atmospheric
turbulence conditions and guide-star magnitude, among other factors. The goal of
modal control optimization is then to use this information (when available) to perform
a mode-by-mode optimization of the system transfer functions (section 3.3.2) that will

113
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Figure 3.1: Block diagram of a closed-loop AO control system showing the turbulence
signal, φtur, as the input to the system.

lead to an improvement of the quality of the AO-corrected images. In general, the
optimization of the system transfer functions is achieved by fine-tuning the parameters
of the temporal controller of the MCAO system. When the temporal controller is a
modal integrator (section 3.2.3) the system transfer functions for each mode can be
tuned by adjusting the integrator’s modal gains. This is why, in SCAO, this control
law is also known as the Optimized Modal Gain Integrator (OMGI).

Le Roux et. al. [131] studied for the first time the extension of the OMGI control
law to MCAO, and called it the Multi-conjugate Optimized Modal Gain Integrator
(MOMGI). In this work, we will study the MOMGI control law further. In particular,
we will study the implications of a phenomenon that we have identified in chapter 2,
namely the propagation of the remaining error, and that has not been studied before
in the framework of MCAO.

3.2 Spatio-temporal MCAO control system model

In this section we will introduce the spatio-temporal models of the components of an
MCAO system. Figure 1.8 showed the block diagram of a closed-loop adaptive optics
system in which the turbulence is shown as a disturbance signal to the AO system.
This is the kind of diagrams that the control theorists are used to work with. However,
the AO community is more familiar with block diagrams in which the turbulence signal
is shown as the input to the AO system, as in figure 3.1. It is straightforward to show
that the block diagram of figure 1.8 can be rearranged as shown in figure 3.1. Without
loss of generality, we will consider in this chapter that the reference slope vector in
figure 1.8 is equal to zero (sref = 0).

There are in general two approaches to modelling a control system: either using
the frequency domain formalism, or the state-space formalism [35]. The frequency
domain formalism has been widely used to analyze and design adaptive optics control
systems [90]. This approach is particulary suited for the study of modal control because
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Figure 3.2: Block diagram of a closed-loop MCAO system showing the spatio-temporal
model of each component.

each controlled mode is assumed to be independent of the others (i.e. not coupled).
Therefore, for n controlled modes there will be n single-input-single-output (SISO)
control loops. On the other hand, the state-space formalism is better suited for the
analysis of multi-input-multi-output (MIMO) control systems and for the design of
optimal controllers. Several authors have studied optimal control based on the Kalman
filter for adaptive optics systems [103, 82, 132, 158, 108].

In this chapter we will study the problem of modal control optimization for MCAO
systems based on the frequency domain formalism. We will generalize to MCAO the
spatio-temporal modelling developed by E. Gendron [53] and C. Desssenne [22] for
SCAO systems. Following their approach, the linear model of each AO component will
be described with two matrices, one for the spatial response and one for the tempo-
ral response. Figure 3.2 shows the block diagram of an MCAO system detailing the
components’ models. The spatio-temporal model of each MCAO component will be
described further below.

3.2.1 Deformable mirrors

Let us consider an MCAO system with NDM deformable mirrors (l = {1 . . . NDM}).
The spatio-temporal model of the deformable mirrors is defined by a matrix N, and
a transfer matrix denoted by B(s). The matrix N is the influence matrix defined in
equation 2.91. Recall that it is a block-diagonal matrix that contains all the NDM

influence matrices. Similarly, the transfer matrix B(s) is a block-diagonal matrix con-
taining all the NDM transfer matrices. The transfer matrix of the lth DM, denoted
as Bl(s), is required to model the temporal response of its actuators. If there is no
mechanical coupling among the actuators of the lth DM, the matrix Bl(s) will become
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diagonal. Furthermore, if all actuators have the same response, the transfer matrix
Bl(s) will be reduced to a single transfer function Bl(s). For the case of piezo-stacked
DMs it can be assumed that the DM reacts instantaneously to the commands, hence
B(s) = 1. In other words, the DM dynamics are negligible. For bimorph DMs and
large deformable mirrors this may not be true so Bl(s) might have to be taken into
account when studying the temporal response of the corresponding AO system.

Finally, the spatio-temporal linear model of the DMs can be written as1:

ϕ̃cor(s) = NB(s)ũ(s) (3.1)

where u is the command vector that drives the DMs (equation 2.90), and ϕcor is the
correction phase vector produced by the DMs (equation 2.89).

An important simplification that we will do in this chapter is to consider that there
are as many turbulent layers as deformable mirrors (NL = NDM ) and that the turbulent
layers and the DMs are conjugated to the same heights. This is basically the so-called
model approximation proposed by T. Fusco [43]. Then, —as it was done in section
2.2.1— we will define the turbulence volume phase space EV , but this time it will be
formed by only NL = NDM infinite-dimensional phase spaces Ej each one of them
defined in its corresponding DM metapupil. Following the linear algebra formalism
related to the DM spaces introduced in section 1.2.1.2 and generalized to several layers
in section 2.2.2, we will also redefine in this chapter as MV the subspace of EV that
can be generated by the NL = NDM DMs. Then, by construction, the vector ϕcor

is a coordinates vector of MV . Finally, we will also denote as M⊥
V the orthogonal

complement of MV , so that EV can be expressed as EV = MV ⊕M⊥
V .

3.2.2 Wavefront sensors

Let us consider an MCAO system with NGS Shack-Hartmann wavefront sensors. The
spatio-temporal model of the WFSs is defined by a matrix D and a transfer function
denoted by I(s). The matrix D was defined in equation 2.11. However, since in this
chapter we are considering an MCAO system operating in closed loop then the WFSs
will measure the residual phase in the telescope pupil φres. Therefore, the measurement
vector can be expressed as:

1We will use the symbol ˜ to denote a given vector in the (temporal) frequency domain (i.e. Laplace,
z-transform or Fourier transform depending on the context).
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s = Dφres + w

= D (φtur − φcor) + w

= D (ML
αϕtur −MDM

α ϕcor) + w . (3.2)

Since we will assume that NL = NDM , then ML
α = MDM

α , so we will simply denote
these matrices as Mα:

Mα
4
= ML

α = MDM
α . (3.3)

Let us now split the turbulent phase vector ϕtur in two components: ϕtur‖ and
ϕtur⊥ , as it was done in the formulation of the approximate direct problem in sec-
tion 2.2.2. Note that, similarly to the vector ϕcor (section 3.2.1), the vector ϕtur‖ is
also a coordinates vector of the DMs subspace MV whereas ϕtur⊥ is a coordinates
vector of the subspace M⊥

V .

The matrix Mα will be split in two meta-matrices too, namely Mα‖ and Mα⊥ , as
it was done in equations 2.18 and 2.19. Finally, equation 3.2 can be rewritten as:

s = DMα‖(ϕtur‖ −ϕcor) + DMα⊥ϕtur⊥ + w . (3.4)

The matrix DMα⊥ characterizes the response of the WFSs to those high-order modes
{ϕtur⊥} that cannot be produced by the deformable mirrors.

Regarding the temporal response of the WFSs, there are two transfer matrices
involved: I(s) and Rτ (s). We will consider that the temporal response of all WFSs
channels is the same and that there is no coupling between them. Hence, the temporal
response is simply described by two transfer functions: I(s) and Rτ (s). I(s) accounts
for the integration time of the WFSs’ detectors, denoted as T , and is given by [90]:

I(s) =
1− e−Ts

Ts
. (3.5)

The sampling frequency of the MCAO system is given by fs = 1/T . The transfer
function Rτ (s) accounts for a pure time delay τ introduced by the read-out of the WFSs’
detector, the digitalization of the signals, and the computation of the measurement
vector s. It is simply given by:

Rτ (s) = e−τs . (3.6)
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The complete spatio-temporal linear model for the wavefront sensors becomes:

s̃(s) = Rτ (s)
[
I(s)Dφ̃res(s) + w̃(s)

]
. (3.7)

3.2.3 Controller

The controller generates the command vector u that drives the DMs from the measure-
ment vector s and ensures the temporal stability of the MCAO system. Note that the
controller is the only discrete-time component of the AO system. The spatio-temporal
model of the controller is defined with two matrices: the reconstruction matrix R and
the controller discrete-time transfer matrix C(z).

Modal gain optimization is based on a simple integrator controller. The discrete-
time transfer function of an integrator is [35]:

C(z) =
g

1− z−1
(3.8)

where g is the integrator gain. As we will discuss in section 3.4, there will be a different
integrator gain for each controlled mode. If there is no coupling between the controlled
modes the matrix C(z) will be diagonal, and each element of the diagonal will be given
by equation 3.8. The complete spatio-temporal model of the controller is given by:

ũ(s) = C(s)Rs̃(s) , (3.9)

where the continuous-time transfer matrix C(s) can be computed from C(z) by sub-
stituting z = eTs [36]. Then, the equivalent transfer function of a simple integrator in
the Laplace domain is:

C(s) =
g

1− e−Ts
. (3.10)

3.2.4 DAC and HVA

The digital-to-analog (DAC) converter and the high-voltage amplifier (HVA) interface
the digital controller with the deformable mirrors. We will consider that all the channels
have the same temporal response, so these components can be characterized with simple
transfer functions. The transfer function of the DAC is given by [90]:

I(s) =
1− e−Ts

Ts
, (3.11)
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where T is the sampling period of the system. The DAC must be synchronized with the
WFSs detectors. Note that the transfer functions of the WFSs and the DAC have the
same expression. The HVA produces the high voltages required to drive the deformable
mirrors. The settling time is in general much faster than the sampling period so its
dynamics can be neglected. Hence, its transfer function is equal to an amplification
constant and it won’t be considered explicitly in our formulation.

3.2.5 Feedback equation and coupling

From diagram 3.2, and introducing the spatio-temporal models presented in the sub-
sections above, it can be shown that:

φ̃cor(s) = [I2(s)Rτ (s)B(s)]MDM
α NC(s)RD[φ̃tur(s)− φ̃cor(s)]

+ [I(s)Rτ (s)B(s)]MDM
α NC(s)Rw̃(s) . (3.12)

This is the multi-variable feedback equation expressed in the Laplace domain that
totally describes the closed-loop MCAO system. Now, we would like to decouple the
MCAO control system so that each controlled mode can be controlled independently
of the others. However, decoupling has two different connotations; one spatial and one
temporal. From the spatial point of view, the coupling matrix A is defined as [22]:

A = RMint (3.13)

where Mint denotes the MCAO interaction matrix:

Mint = DMDM
α N . (3.14)

A system is said to be spatially decoupled if A is a diagonal matrix. For example, a
control system based on the MMSE reconstructor (eq. 2.80) computed as:

RMMSE =
[
MT

intC
−1
w Mint + C−1

ϕ

]−1
MT

intC
−1
w (3.15)

would not be decoupled because clearly RMMSEMint is not diagonal. On the other
hand, a control system based on the least-squares reconstructor (eq. 2.32) would be
decoupled because:

ALS = RLSMint

= (MT
intMint)

−1MT
intMint = Id .
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Note that this is not the case for the truncated least-squares reconstructor (eq. 2.43)
because the truncation of badly-seen modes actually introduces a coupling. Using the
same notation presented in section 2.3.2.3 to represent the SVD of Mint:

Mint = UΣVT (3.16)

it is straightforward to show that the coupling matrix is equal to:

ATLS = VΣ−1
filΣVT . (3.17)

Nevertheless, the coupling introduced by the TLS reconstructor is not strong, so it is
usually assumed that systems using this reconstruction matrix are spatially decoupled.

From the temporal point of view, decoupling implies that the transfer functions of
the controlled modes are independent of each other. Formally, a system is temporally
decoupled if the closed-loop transfer matrix is a diagonal matrix. In the following
sections we will show how we can decouple an MCAO system, both spatially and
temporally, in order to control each controlled modes independently of the others.

3.3 Modal Control for MCAO

In order to do modal gain optimization in MCAO we first need to define which are
going to be the modes to be controlled, and then define a method to optimize the gains
associated with each of these modes. In this section we will discuss the first issue. Gain
optimization methods will be presented in section 3.4.

Choosing the modes to be controlled is equivalent to selecting a suitable modal basis
for MV . The controlled modes are the vectors of the chosen basis of MV . As discussed
by E. Gendron [53], there are two basic properties that this modal basis should have.
The first one is that the controlled modes should be orthogonal.

The second one is that the chosen basis should span the widest range of sensitivi-
ties. The simplest modal basis that has these two properties is the one formed by the
eigenmodes of MT

intMint. The eigenmodes of MT
intMint are also known as the MCAO

system modes.

The MCAO interaction matrix Mint establishes the link between the space of the
WFSs measurements and the DMs space MV , so the MCAO system modes contain all
the information about which modes the system can or cannot compensate for. These
are the modes that we will choose to study modal gain optimization for MCAO.
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We will show below how an MCAO system can be decoupled in the system space,
and define an independent control loop for each system mode. In order to do that we
will first need a reconstruction matrix that we can use to estimate the system modes
from the WFSs measurements. Expressing the least-squares (LS) reconstructor RLS

as:
RLS = VΣ−1UT (3.18)

it becomes clear that the reconstruction matrix that we are looking for is simply given
by:

RMP
LS

= Σ−1UT . (3.19)

3.3.1 Decoupling in the MCAO system space

Modal control techniques assume that there is no coupling between controlled modes.
Hence, the control loop for each mode can be optimized independently of the others.
We will show below by manipulating the feedback equation (eq. 3.12) that the control
loop for each system mode can be decoupled from the others. Multiplying both sides
of equation 3.12 by D and recalling the expression for the MCAO interaction matrix
(eq. 3.14) we obtain:

Dφ̃cor = [I2RτB]MintCRLSD(φ̃tur − φ̃cor)

+ [IRτB]MintCRLSw̃ . (3.20)

To improve legibility we have omitted the dependency on the complex variable (s).
Substituting the SVD expressions of Mint and RLS (eq. 3.16 and 3.18):

Dφ̃cor = [I2RτB]UΣVTCVΣ−1UTD(φ̃tur − φ̃cor)

+ [IRτB]UΣVTCVΣ−1UT w̃ . (3.21)

In order to show explicitly the effect of the orthogonal components of ϕtur we introduce
equations 3.2, 3.3, and 3.4 and we obtain:

DMα‖ϕ̃cor = [I2RτB]UΣVTCVΣ−1UTDMα‖

(
ϕ̃tur‖ − ϕ̃cor

)

+ [I2RτB]UΣVTCVΣ−1UTDMα⊥ϕ̃tur⊥

+ [IRτB]UΣVTCVΣ−1UT w̃ . (3.22)
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Note that the previous steps have simply reformulated the feedback equation in the
WFSs space. We can now reformulate it in the system space by multiplying both sides
of eq. 3.22 by the reconstruction matrix RMP

LS
= Σ−1UT (eq. 3.19):

Σ−1UTDMα‖ϕ̃cor = [I2RτB]VTCVΣ−1UTDMα‖

(
ϕ̃tur‖ − ϕ̃cor

)

+ [I2RτB]VTCVΣ−1UTDMα⊥ϕ̃tur⊥

+ [IRτB]VTCVΣ−1UT w̃ (3.23)

where we have used the fact that UT = U−1. Let us now define all the variables of
interest in the system space:

ϕMP
cor

4
= Σ−1UTDMα‖ϕcor (3.24)

ϕMP
tur‖

4
= Σ−1UTDMα‖ϕtur‖ (3.25)

ϕMP
tur⊥

4
= Σ−1UTDMα⊥ϕtur⊥ (3.26)

wMP
4
= Σ−1UTw . (3.27)

We will call ϕMP
tur‖ the turbulent eigenmode, ϕMP

cor the correction eigenmode, ϕMP
tur⊥ the

propagated remaining error in system space, and wMP the propagated measurement
noise in system space. Equation 3.23 can be rewritten as:

ϕ̃MP
cor = [I2RτB]VTCV

(
ϕ̃MP

tur‖ − ϕ̃MP
cor

)

+ [I2RτB]VTCVϕ̃MP
tur⊥

+ [IRτB]VTCVwMP . (3.28)

The matrix VTCV in equation 3.28 is the controller’s transfer matrix in system space,
and will be denoted as CMP :

CMP = VTCV . (3.29)

In order to decouple the control system in the system space we just need to define a
diagonal transfer matrix CMP . As mentioned in section 3.2.3, the ith element of the
diagonal of CMP will contain the transfer function of a simple integrator controller
whose gain is denoted as gi. Finally, we can write an independent feedback equation
for the ith system mode as:

ϕ̃MP
cor,i = [I2RτB]CMP

i (ϕ̃MP
tur‖,i − ϕ̃MP

cor,i)

+ [I2RτB]CMP
i ϕ̃MP

tur⊥,i
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Figure 3.3: Block diagram of the independent control loop for each system mode of an
MCAO system. (Top) Closed-loop operation. (Bottom) Open-loop operation.

+ [IRτB]CMP
i w̃MP

i (3.30)

where CMP
i denotes the ith element of the diagonal of CMP . Figure 3.3(top) shows the

equivalent independent control loop for each system mode.

Open-loop operation In the following sections we will also talk about the open-loop
operation of an MCAO system. Figure 3.3(bottom) shows the equivalent control loop
for each system mode in open-loop. It is important to realize that open-loop operation
simply means that there is no correction applied to the DMs. Therefore, the WFSs are
measuring directly the turbulence phase and not the residual phase.

3.3.2 System Transfer Functions

We can now compute the transfer functions for each independent control loop. From
figure 3.3, it can be seen that the open-loop transfer function is given by:

Gi = I2RτBCMP
i . (3.31)
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Substituting the expressions for all transfer functions in equation 3.31, and considering
that B(s) = 1, leads to the well-known open-loop transfer function of an AO system [90]:

Gi(s) =
[
1− e−Ts

Ts

]2

e−τsCMP
i (s) (3.32)

The equivalent discrete-time open-loop transfer function Gi(z) can be obtained by
following a standard procedure described in reference [36]. It consists in computing the
inverse Laplace transform of Gi(s) to obtain a function in the continuous-time domain
Gi(t). Then, this function is sampled every T seconds to obtain the function Gi(kT ).
Finally, the z-transform of this function is computed to obtain Gi(z). The pure time
delay τ must be expressed as τ = lT −mT where l is an integer and 0 ≤ m < 1. It can
be shown that applying this method to equation 3.32 leads to [24]:

Gi(z) = z−l
(
m(1− z−1) + z−1

)
CMP

i (z) . (3.33)

Other system transfer functions of interest are the rejection transfer function Ei and
the closed-loop transfer function Hi. They are defined as:

Ei =
1

1 + Gi
, (3.34)

Hi =
Gi

1 + Gi
. (3.35)

The last transfer function we will be interested in is the noise transfer function Hn,i.
From figure 3.3 it can be shown that:

Hn,i =
IRτBCMP

i

1 + Gi
. (3.36)

Figure 3.4 shows the modulus of all the transfer functions for fs = 400Hz, and τ =
T , and for three different values of gi. Note that |Hi| and |Hn,i| only differ at high
frequencies.

Correction bandwidth We will define the correction bandwidth of the MCAO sys-
tem as the 0dB cross-over frequency of the rejection transfer function.
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Figure 3.4: Examples of the modulus of the system transfer functions for different gains
gi, and for fs = 400Hz, and τ = T . (a) Open-loop transfer function, (b) Closed-loop
transfer functions, (c) Noise transfer functions, (d) Rejection transfer functions.

3.4 Optimized modal control for MCAO

In this section we will study different methods to compute the optimized modal gains for
each MCAO system mode. We will attempt to generalize to the MCAO case the original
methods created for SCAO systems and that have been successfully implemented for
instance in NAOS, the SCAO system of the Very Large Telescope (VLT) [50].

The goal of optimized modal control is to minimize the variance of the residual
phase ϕres by minimizing the residual variance of each controlled mode. From figure
3.3, the residual of the ith eigenmode is given by:

ϕ̃MP
res,i = ϕ̃MP

tur‖,i − ϕ̃MP
cor,i . (3.37)
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Solving eq. 3.30 for ϕ̃MP
cor,i and substituting it in eq. 3.37 leads to:

ϕ̃MP
res,i =

1
1 + I2RτBCMP

i

ϕ̃MP
tur‖,i −

I2RτBCMP
i

1 + I2RτBCMP
i

ϕ̃MP
tur⊥,i

− IRτBCMP
i

1 + I2RτBCMP
i

w̃MP
i . (3.38)

Recalling the definitions of the system transfer functions presented in section 3.3.2
equation 3.38 can be simply rewritten as:

ϕ̃MP
res,i = Eiϕ̃MP

tur‖,i −Hiϕ̃MP
tur⊥,i −Hn,iw̃MP

i . (3.39)

This expression is totally equivalent to the one derived by E. Gendron et. al. [55].
The residual phase is the sum of three terms. The first term is the contribution to the
residual phase coming from the uncompensated portion of ϕMP

tur‖,i. The second term
characterizes the propagation of the remaining error, and the third one characterizes
the propagation of the measurement noise. As shown in figure 3.4, increasing gi leads
to a higher correction bandwidth, i.e. a better rejection of ϕMP

tur‖,i. However, increasing
gi also leads to higher propagation of both the remaining error and the measurement
noise. A compromise is required, and in fact the goal of modal gain optimization
methods is to find the gain gi that minimizes the variance of ϕMP

res,i, for each eigenmode.
The variance of ϕMP

res,i, denoted as σ2
i , can be computed as:

σ2
i =

∫ ∞

−∞
〈|ϕ̃MP

res,i(jω)|2〉dω (3.40)

where we have made the substitution s = jω. The operator 〈|̃·|2〉 denotes the power
spectral density (PSD). Assuming that the propagated measurement noise wMP

i is
not correlated with neither the turbulence ϕMP

tur‖,i nor the propagated remaining error
ϕMP

tur⊥,i, and assuming also that the correlation between ϕMP
tur‖,i and ϕMP

tur⊥,i is negligible,
the variance of ϕMP

res,i can be expressed as:

σ2
i =

∫ ∞

−∞
|Ei(jω)|2〈|ϕ̃MP

tur‖,i(jω)|2〉 dω

+
∫ ∞

−∞
|Hi(jω)|2〈|ϕ̃MP

tur⊥,i(jω)|2〉 dω

+
∫ ∞

−∞
|Hn,i(jω)|2〈|w̃MP

i (jω)|2〉 dω . (3.41)
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It is important to note that for SCAO systems the contribution of the second term is
in general negligible with respect to the others two. Modal gain optimization methods
developed for SCAO actually do not take it into account [55]. As we discussed in
chapter 2, the propagation of the remaining error in MCAO is not negligible, so we
will have to take it into account. We should note that B. Le Roux et. al. [132] did not
consider the propagation of the remaining error in their study of the MOMGI control
law. Therefore, in this work we have extended their approach by taking into account
this additional phenomenon in the computation of the optimized modal gains.

There are two methods for computing the optimized modal gains originally proposed
for SCAO systems. These methods are the Gendron method [55] and the Dessenne
method [24]. Both methods are equivalent in the sense that both are intended to
minimize the variance of the residual phase. We will review each of these methods in
the following sections, and discuss the possibility of extending them for the MCAO
case.

3.4.1 Case study: simulation parameters

In this section we will illustrate with numerical simulations the problems encountered in
modal gain optimization for MCAO. We will consider an MCAO system configuration
already presented in chapter 2, comprising 2 deformable mirrors (NDM = 2) conjugated
at 0 and 8.5 km, and three wavefront sensors (NGS = 3) coupled to natural guide stars
located on the vertices of an equilateral triangle inscribed in a 2’ FoV (figure 2.4). The
telescope diameter is D = 8m.

For the chosen FoV=2’, the diameters of the DMs metapupils are 8m and 12.95m.
We will consider that the influence functions of the DMs are directly Zernike polynomi-
als. The lower DM can correct up to 10 radial orders (65 Zernikes) whereas the higher
DM up to 16 radial orders (152 Zernikes). Hence, there will be a total of 217 system
modes.

We will also consider that the three WFSs are idealized WFSs measuring directly
Zernike coefficients. Each WFS can measure directly the first 16 radial orders (152
Zernike coefficients). The measurement noise on each Zernike coefficient will be simu-
lated as described in section 2.4.4 in order to mimic the characteristic noise propagation
of a Shack-Hartmann WFS. We will study the case for two different signal-to-noise ra-
tios, namely SNR=10, and SNR=100. For the current system configuration and a
NAOS-like zeropoint (Z0 = 6.4x1011 photons/s) these SNRs are roughly equivalent to
star magnitudes MV =12 and MV =9.5 respectively.
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Figure 3.5: Variance distribution in the system space (or eigenspace) for D
r0

= 38 @
700nm and for a SNR equal to 10 and 100.

We have also considered a simplified Kolmogorov turbulence model comprising two
layers of equal strength conjugated at the DMs altitudes: 0km and 8.5km respectively.
The equivalent wind speed at each turbulent layer will be set to V = 10 m · s−1.

The wavefront sensing wavelength is 0.7µm and the imaging wavelength is 2.2µm.
We have simulated a seeing value of 0.73 arcsec. Then, r0 = 0.21m at 0.7µm and
r0 = 0.83m at 2.2µm. The global D

r0
ratio is equal to 38 at 0.7µm and to 9.6 at 2.2µm.

Figure 3.5 shows the variance distribution in eigenspace for the present simula-
tion parameters and for a SNR equal to 10 and 100. The gain associated with each
eigenmode needs to be optimized for each SNR.

The sampling frequency is set to 400 Hz (T = 2.5ms). We will set the pure time
delay to one sampling period: τ = T . DMs dynamics will not be simulated: |B(s)| = 1.
From equation 3.33, the discrete-time open-loop transfer function becomes:

Gi(z) = z−2 gi

1− z−1
. (3.42)

Note that the MCAO system is simply characterized by a two-frames delay. The
equivalent block diagrams for both closed-loop and open-loop operations are shown
in figure 3.6. The reconstruction and control equations at iteration n can be written
as:

ϕMP
mes(n) = RMP

LS
s(n) (3.43)
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Figure 3.6: Discrete-time block diagrams for the ith MCAO eigenmode control loop:
(Top) closed-loop operation, (Bottom) open-loop operation.

ϕMP
cor (n) = ϕMP

cor (n− 1) + C
OMGI

ϕMP
mes(n− 2) (3.44)

u(n) = VϕMP
cor (n) (3.45)

where the matrix COMGI is a diagonal matrix containing the optimized modal gains gi.

3.5 Gendron method

E. Gendron originally proposed to compute the optimized modal gains gi by minimizing
directly the criterion JG

i = σ2
i (eq. 3.41). Note that the Gendron method requires an

estimate of the temporal power spectra of ϕMP
tur‖,i , ϕMP

tur⊥,i and wMP
i . Also the system

transfer functions need to be well characterized. We will first consider the case where
the required PSDs can be computed analytically based on some a-priori knowledge on
the turbulence.

3.5.1 Temporal power spectra

For computing the optimized modal gains with the Gendron method it is required to
estimate the power spectra of the turbulent eigenmode ϕMP

tur‖ , the propagated remaining
error ϕMP

tur⊥ , and the propagated measurement noise wMP .
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Let us consider first the theoretical PSDs of ϕMP
tur‖ and ϕMP

tur⊥ . These vectors were
defined in equations 3.25 and 3.26. Using these definitions we could compute the
theoretical PSD of the ith turbulent eigenmode simply as:

〈|ϕ̃MP
tur‖,i(jω)|2〉 ≈

∑

j

(Σ−1UTDMα‖)
2
i,j〈|ϕ̃tur‖,j(jω)|2〉 , (3.46)

where all the cross-spectra between the coefficients of ϕtur‖ have been neglected. Sim-
ilarly, we could compute the theoretical PSD of the ith coefficient of ϕMP

tur⊥ as:

〈|ϕ̃MP
tur⊥,i(jω)|2〉 ≈

∑

j

(Σ−1UTDMα⊥)2i,j〈|ϕ̃tur⊥,j(jω)|2〉 , (3.47)

where all the cross-spectra between the coefficients of ϕtur⊥ have been neglected too.
In order to use these expressions we are now required to know the PSDs of ϕtur‖ and
ϕtur⊥ . In our present case study ϕtur‖ and ϕtur⊥ are vectors of Zernike coefficients and
their temporal PSDs for Kolmogorov turbulence are well-known (section 1.1.6.1). The
only parameters that are required to compute these spectra are D/r0 and the wind
speed V for each considered layer (section 3.4.1). As an example, figure 3.7 shows the
theoretical PSDs of eigenmodes 50 and 200. Note that the former is a well-seen mode
whereas the latter is a badly-seen mode.

Let us now consider the theoretical PSD of the propagated measurement noise wMP .
We will assume that wMP can be modelled as a white noise with zero-mean Gaussian
statistics and covariance matrix CMP

w . Hence, the PSD of wMP
i is constant and equal

to:
〈|w̃MP

i (jω)|2〉 = T [CMP
w ]i,i . (3.48)

The diagonal of CMP
w was shown in figure 3.5 for SNR=10 and SNR=100. Also, fig-

ure 3.7 shows the corresponding theoretical PSDs for the eigenmodes 50 and 200.

3.5.2 System transfer functions

For computing the optimized modal gains with the Gendron method it is also required
to have an analytical model of the control loop in order to compute the modulus of
the system transfer functions, namely |Ei|, |Hn,i|, and |Hi|. It is clear that the control
loop model has to be validated experimentally for a real MCAO system in order to be
sure that the theoretical expressions match the experimental ones. The system transfer
functions for our case study and for different gain values were plotted in figure 3.4.
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Figure 3.7: Examples of theoretical power spectra required for Gendron method (D
r0

=
38 @ 700nm). (Left) PSDs associated with eigenmode number 50. (Right) PSDs
associated with eigenmode number 200.

3.5.3 Optimized modal gains

The optimized modal gain gi is obtained by minimizing the criterion JG
i = σ2

i (eq. 3.41).
We have now for our case study all required ingredients to proceed to the minimization
problem, namely the PSDs of ϕMP

tur‖ , ϕMP
tur⊥ , and wMP , and the modulus of the system

transfer functions |Ei|, |Hn,i|, and |Hi|.
Figure 3.8 shows the criterion JG

i = σ2
i as a function of the gain gi for eigenmodes

number 50 and 200. The contributions to JG
i coming from each of the three terms

in equation 3.41 are also shown. The SNR was set to 10. For well-seen modes, such
as eigenmode 50, there is a value of gi for which the residual variance σ2

i reaches a
minimum. For eigenmode 50 the residual variance σ2

50 reaches a minimum when g50 =
0.33, as shown in figure 3.8. For badly-seen modes, such as eigenmode number 200,
the contributions of both the propagated remaining error and propagated measurement
noise always dominate, and the minimum of the residual variance is simply obtained
when gi = 0. That is, any attempt to compensate for these eigenmodes will be futile.
In particular, note that for eigenmode 200 it is the propagated remaining error that
dominates.

It is also interesting to see from figure 3.8 how each of the three contributions
evolve as gi increases. In particular, note that the remaining error term increases
rather smoothly with the gain. This is due to the fact that even if the cut-off fre-
quency of |Hi| does increase with gi, the PSD of ϕMP

tur⊥,i at higher frequencies rolls
off steeply. Hence, the value of the integral

∫ |Hi(jω)|2〈|ϕ̃MP
tur⊥,i(jω)|2〉 dω does not in-
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Figure 3.8: Residual variance σ2
i as a function of the gain gi. The individual

contributions to σ2
i are also shown: turbulence

∫ |Ei(jω)|2〈|ϕ̃MP
tur‖,i(jω)|2〉 dω, prop-

agated remaining error
∫ |Hi(jω)|2〈|ϕ̃MP

tur⊥,i(jω)|2〉 dω, and propagated measurement
noise

∫ |Hn,i(jω)|2〈|w̃MP
i (jω)|2〉 dω. The simulation conditions are D

r0
= 38 @ 700nm,

and SNR=10. (Left) eigenmode number 50. (Right) eigenmode number 200.

creases dramatically with the gain. On the other hand, the contribution of the noise
term does increase steadily with the gain due to the fact that its PSD is a constant
and as the cut-off frequency of |Hn,i| increases with the gain the value of the integral∫ |Hn,i(jω)|2〈|w̃MP

i (jω)|2〉 dω increases substantially too.

Analytically, the optimized modal gains can be determined by solving the set of
equations ∂JG

i /∂gi = 0. The differentiation of JG
i can be expressed as:

∂JG
i

∂gi
=

∫ ∞

−∞

∂|Ei(jω)|2
∂gi

〈|ϕ̃MP
tur‖,i(jω)|2〉 dω

+
∫ ∞

−∞

∂|Hi(jω)|2
∂gi

〈|ϕ̃MP
tur⊥,i(jω)|2〉 dω (3.49)

+
∫ ∞

−∞

∂|Hn,i(jω)|2
∂gi

〈|w̃MP
i (jω)|2〉 dω .

The partial derivatives of the system transfer functions can be easily computed ana-
lytically from their theoretical expressions [18]. Figure 3.9 shows a plot of ∂JG

i /∂gi as
a function of gi for different eigenmodes. Note that for well-seen modes the optimized
modal gain gi is the one for which the curve of ∂JG

i /∂gi crosses zero. Numerically, a di-
chotomy algorithm can be used to find the zero-crossing value of gi. On the other hand,
note that for badly-seen modes there is actually no local minimum and so the curve of
∂JG

i /∂gi never crosses zero. Nevertheless, a dichotomy algorithm with an initial value
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Figure 3.9: ∂JG
i /∂gi as a function of gi for different eigenmodes (SNR=10).

(Left) Well-seen modes: 50, 100 and 150. (Right) Badly-seen modes: 190, 195,
and 200.

of gi = gmax and programmed to decrease the gain within the interval 0 ≤ gi ≤ gmax

until a change in sign is found will lead to the right optimized modal gain, i.e. gi = 0.

The value of gmax is fixed from stability constraints. It can be shown that in order
to ensure the relative stability of an AO system with a total delay of 2 frames the
maximum gain of an integrator should be set to gmax = 0.5 [90].

We would like to evaluate with numerical simulations what is the improvement in
performance brought by taking into account the propagated remaining error term in
equation 3.49. Therefore, we have computed two sets of optimized modal gains. The
first set is computed by taking into account the three terms in equation 3.49 whereas for
the second set the propagated remaining error term has been neglected (like in SCAO
systems). The two sets of optimized modal gains for all eigenmodes and for SNR=10
and SNR=100 are shown in figure 3.10. As expected, higher gains are assigned to well-
seen modes whereas lower gains (including zero gain) are assigned to badly-seen modes.
Note also that taking into account the remaining error term will produce even lower
gains for badly-seen modes. This result was expected from figures 3.5 and 3.8(right)
from which we saw that the propagated remaining error is in general stronger than the
propagated measurement noise for badly-seen modes. Clearly, as the SNR increases the
propagated measurement noise decreases and the propagated remaining error becomes
more important. This is why the difference between the two sets of optimized modal
gains assigned to badly-seen modes is bigger for SNR=100 than for SNR=10.

The performance in the FoV in terms of Strehl Ratio (SR) at 2.2µm obtained from
numerical simulations is shown in figure 3.11. Note that for SNR=10 there is a little
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Figure 3.10: Optimized modal gains for all eigenmodes obtained with the Gendron
method. (+) Taking into account the three terms of equation 3.49. (¤) Neglecting the
propagated remaining error term. (Left) SNR=10 (Right) SNR=100.

difference in performance obtained with the two sets of optimized modal gains. On the
other hand, neglecting the propagated remaining error in the computation of optimized
modal gains for the case of SNR=100 will lead to a substantial drop in SR in the FoV
due to the fact that badly-seen modes have not been controlled correctly.

We should remark that Le Roux et. al. [131, 132] did not find this behavior of
the MOMGI control law in their numerical simulations because of the method they
used to simulate the atmospheric turbulence. Indeed, they used an auto-regressive
(AR) model of the turbulence that does not simulate high-order spatial frequencies. In
consequence, the propagation of the remaining error is effectively not present, and the
optimized modal gains computed using the conventional Gendron method gave them
good results.

In conclusion, it is possible in principle to extend the Gendron method to MCAO
by taking into account the propagated remaining error term. However, it is required
to know a-priori the theoretical PSDs of ϕMP

tur‖ , ϕMP
tur⊥ and wMP . The possibility of

estimating these PSDs from real-time data will be discussed in section 3.7.

3.5.4 TLS reconstructor versus MOMGI

It is important to note the similarities between a control law based on the TLS re-
constructor plus a simple integrator and the MOMGI control law. In fact, the former
control law can also be expressed as a LS reconstructor (i.e. no truncated modes) plus
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Figure 3.11: Performance in the FoV (SR at 2.2µm) for the Multi-conjugate Opti-
mized Modal Gain Integrator (MOMGI). The gains were computed using the Gendron
method, with and without taking into account the propagated remaining error term.
(Left) SNR=10 (Right) SNR=100.

a modal integrator with a transfer matrix given by:

CMP
i =

{
0 for truncated eigenmodes

gmax

1−z−1 for others.
(3.50)

where the gain gi = gmax is the same value for all non-truncated system modes. The
border between corrected (gi = gmax) and not-corrected (gi = 0) modes is sharp. The
main advantage of the MOMGI control law with respect to the TLS reconstructor
plus a simple integrator control law is the fact that the modal gains evolve smoothly
according to the SNR of each eigenmode. The performance of the MOMGI control
law will be better in particular for high-order AO systems, as they will exhibit the full
range of optimized modal gains 0 ≤ gi ≤ gmax. A comparison in performance between
these two control laws based on numerical simulations can be found in reference [112].

3.6 Dessenne method

Caroline Dessenne [22] proposed an alternative criterion to the one introduced by E.
Gendron for SCAO systems. We will study in this section its applicability to MCAO.
Before studying the MCAO case, let us review the hypotheses behind the Dessenne
method as it was proposed for SCAO systems.
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3.6.1 The SCAO case

As opposed to the Gendron method, the Dessenne method has the important advantage
of not requiring to know a-priori any theoretical PSDs. Instead, all required information
is deduced from the vector ϕMP

mes (see figures 3.3 and 3.6), which can be obtained directly
from the WFS slopes as stated in equation 3.43. From figure 3.6 we can see that:

ϕ̃MP
mes,i = IRτ ϕ̃MP

res,i + IRτ ϕ̃MP
tur⊥,i + Rτ w̃MP

i . (3.51)

Neglecting the remaining error term —as it is done in SCAO— the variance of ϕMP
mes,i

can be expressed as:

var{ϕMP
mes,i} =

∫
|I(jω)Rτ (jω) |2〈|ϕ̃MP

res,i(jω)|2〉 dω

+
∫
|Rτ (jω)|2〈|w̃MP

i (jω)|2〉 dω , (3.52)

where we have also assumed that there is no correlation between ϕMP
res,i and wMP

i al-
though, from equation 3.39, we can see that ϕMP

res,i does depends on wMP
i . This assump-

tion relies totally on the white nature of wMP
i and the fact that the noise is propagated

after a given time delay τ , so its correlation is equal to zero.

Now, from equation 3.6 it can be seen that |Rτ | = 1 and from equation 3.5 it can
be shown that [90]:

I(jω) = sinc2

(
ωT

2

)
e−ωT/2 . (3.53)

Therefore, |I| ≈ 1 since the sinc2 function has only an impact on the modulus of I at
high frequencies. Then, equation 3.52 can be rewritten as:

var{ϕMP
mes,i} =

∫
〈|ϕ̃MP

res,i(jω)|2〉 dω +
∫
〈|w̃MP

i (jω)|2〉 dω

= var{ϕMP
res,i}+ var{wMP

i } (3.54)

From this equation Dessenne realized that the minimization of var{ϕMP
mes,i} was equiv-

alent to the minimization of σ2
i = var{ϕMP

res,i}. Therefore, she proposed to calculate the
ith optimized modal gain by minimizing directly the variance of ϕMP

mes,i. Hence, the
Dessenne criterion can be written as:

JD
i

4
=

∫ ∞

−∞
〈|ϕ̃MP

mes,i(jω)|2〉 dω . (3.55)

Note that the dependence of JD
i on the system transfer functions is not explicit in
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equation 3.55. In order to introduce this dependence Dessenne used a fundamental re-
lationship between the closed-loop measurement ϕMP

mes,i and the open-loop measurement
ϕMP,OL

mes,i . Indeed, from the two block diagrams in figure 3.3 it can be shown that:

ϕ̃MP
mes,i =

1
1 + I2RτBCMP

i

[
RτIϕ̃MP

tur⊥,i + RτIϕ̃MP
tur‖,i + Rτ w̃MP

i

]
(3.56)

ϕ̃MP,OL

mes,i = RτIϕ̃MP
tur⊥,i + RτIϕ̃MP

tur‖,i + Rτ w̃MP
i . (3.57)

Dividing eq. 3.56 by eq. 3.57, and recalling the definition of the rejection transfer
function (eq. 3.34), leads to:

ϕ̃MP
mes,i(jω) = Ei(jω) ϕ̃MP,OL

mes,i (jω) . (3.58)

It is important to note that this fundamental relationship is only valid if the propagated
measurement noise and the propagated remaining error are the same in closed-loop and
in open-loop. Finally, substituting eq. 3.58 in eq. 3.55 JD

i becomes:

JD
i =

∫ ∞

−∞
|Ei(jω)|2〈|ϕ̃MP,OL

mes,i (jω)|2〉 dω . (3.59)

Finally, note that for the Dessenne method it is required to know the PSD of ϕMP,OL

mes,i ,
and the rejection transfer function of the system needs to be well characterized. The
spectra of ϕMP,OL

mes can be obtained experimentally by running the AO system in open-
loop.

3.6.2 The MCAO case

Let us now study the MCAO case starting from equation 3.51. We will derive an
expression for the variance of ϕMP

mes,i but this time without neglecting the remaining
error term. Considering once again that |Rτ | = 1 and |I| ≈ 1, and that the noise wMP

i

is not correlated with ϕMP
res,i nor ϕMP

tur⊥,i, the variance of ϕMP
mes,i can be expressed as:

var{ϕMP
mes,i} = var{ϕMP

res,i}+ var{ϕMP
tur⊥,i}+ var{wMP

i }
+ 2 covar{ϕMP

res,i, ϕ
MP
tur⊥,i} . (3.60)

Note that we cannot assume that ϕMP
res,i and ϕMP

tur⊥,i are uncorrelated. We will derive
now the covariance term from equation 3.39. We will assume nevertheless that the
correlation between ϕMP

tur‖,i and ϕMP
tur⊥,i is negligible. Then, the covariance term can be
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expressed as:

covar{ϕMP
res,i, ϕ

MP
tur⊥,i} ≈ −

∫
Hi(jω)〈|ϕ̃MP

tur⊥,i(jω)|2〉 dω . (3.61)

Finally, substituting equation 3.61 into 3.60 leads to:

var{ϕMP
mes,i} = var{ϕMP

res,i}+ var{ϕMP
tur⊥,i}+ var{wMP

i }

− 2
∫

Hi(jω)〈|ϕ̃MP
tur⊥,i(jω)|2〉 dω . (3.62)

From this equation we can see that the minimization of var{ϕMP
mes,i} is not equivalent

to the minimization of σ2
i = var{ϕMP

res,i}. Indeed, the covariance term introduces a
dependence on the closed-loop transfer function Hi(jω) which in turn depends on the
gain gi. Therefore, finding a gain gi that minimizes var{ϕMP

mes,i} does not mean that
it will minimize σ2

i = var{ϕMP
res,i} too. In the following sections we will verify this

argument with the help of numerical simulations. We will apply the Dessenne method
to an MCAO case and put in evidence the problems associated with this method.

3.6.3 Temporal power spectra

In order to apply the Dessenne method it is required to estimate the PSD of ϕMP,OL

mes,i .
Analyzing the block diagrams shown in figure 3.6 it can be shown that:

〈|ϕ̃MP,OL

mes,i (jω)|2〉 ≈ 〈|ϕ̃MP
tur‖,i(jω)|2〉+ 〈|ϕ̃MP

tur⊥,i(jω)|2〉+ 〈|w̃MP
i (jω)|2〉 (3.63)

where we have neglected all cross-spectra. First, let us study what happens in the
absence of measurement noise. In this case we can predict that:

〈|ϕ̃MP,OL

mes,i (jω)|2〉 ≈ 〈|ϕ̃MP
tur‖,i(jω)|2〉+ 〈|ϕ̃MP

tur⊥,i(jω)|2〉 . (3.64)

We can verify this phenomenon by numerical simulations, just as we did in section
2.4.6 to verify the variance distribution in the eigenspace. Figure 3.12(left) shows the
variance distribution in the eigenspace for the present simulation conditions (D

r0
= 38 @

700nm) and computed following the same procedure outlined in section 2.4.6 (includ-
ing the same approximation for the matrix Mα⊥). Note that the simulated variance
distribution shown in figure 3.12(left) actually corresponds to the variance distribution
of ϕMP,OL

mes when no measurement noise is simulated. Figure 3.12(right) shows an ex-
ample of the theoretical and simulated PSDs. We chose to show the PSDs associated
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Figure 3.12: (Left) Variance distribution in eigenspace (D
r0

= 38 @ 700nm).
(Right) Power spectral density (PSD) associated with eigenmode number 200.

with eigenmode number 200 because this mode is affected by a strong propagation of
the remaining error. As predicted from the variance distribution (figure 3.12(left)) and
from equation 3.64, the PSD of ϕMP,OL

mes,200 is dominated by the PSD of ϕMP
tur⊥,200.

Let us now reconsider the PSD of ϕMP,OL
mes but this time taking into account the effect

of the propagated measurement noise. The expected PSD is given by equation 3.63.
Figure 3.13 shows the PSD of ϕMP,OL

mes,i obtained from simulations for two eigenmodes:
a well-seen one (number 50) and a badly-seen one (number 200). Note that for the
eigenmode number 200 the simulated PSD is dominated at low frequencies by the
propagated remaining error and at high frequencies by the propagated measurement
noise.

3.6.4 Optimized modal gains

The optimized modal gain gi is obtained by minimizing the criterion JD
i (eq. 3.59).

The required ingredients are in this case the PSD of ϕMP,OL

mes,i , and the modulus of the
rejection transfer function |Ei|. Analytically, the optimized modal gains are determined
by solving the set of equations ∂JD

i /∂gi = 0. The differentiation of JD
i can be expressed

as:
∂JD

i

∂gi
=

∫ ∞

−∞

∂|EMP
i (jω)|2
∂gi

〈|ϕ̃MP,OL

mes,i (jω)|2〉 dω . (3.65)

We have computed the optimized modal gains using the PSDs of ϕMP,OL
mes generated

from simulations and presented in the previous subsection (Figure 3.13). Figure 3.14
shows the optimized modal gains computed with both Dessenne method and Gendron
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Figure 3.13: PSD of ϕMP,OL

mes,i obtained from simulations. (Left) eigenmode number
50. (Right) eigenmode number 200. The theoretical PSDs of the turbulence, the
propagated remaining error, and the propagated measurement noise (SNR=10) are
also shown.

method (all three terms included) under the same simulation conditions (SNR=10).
Recall that Dessenne’s gains minimize var{ϕMP

mes,i} whereas Gendron’s gains minimize
σ2

i = var{ϕMP
res,i}. We can see that in general Dessenne’s gains are higher, and that the

difference between both sets of gains becomes quite important for badly-seen modes.
We can explain this trend as follows. Recall that var{ϕMP

mes,i} depends on the integral
of the PSD of ϕMP

tur⊥,i multiplied by Hi(jω) (i.e. the last term of eq. 3.62). Then, since
the propagation of the remaining error ϕMP

tur⊥,i is very strong for badly-seen modes, the
influence of this term will be important in the minimization of var{ϕMP

mes,i} driving the
assigned gains to higher values. If we applied this set of gains to an MCAO system, it is
clear that the high gains assigned to the badly-seen modes would lead to a considerable
loss in performance and eventually an unstable operation of the MCAO system. In
conclusion, the Dessenne method is not applicable to MCAO. The simulation results
that put this problem in evidence were the topic of a conference paper [112].

3.7 Discussion: practical implementation

The main advantage of the Dessenne method with respect to the Gendron method
is the fact that, for SCAO systems, it is easier to estimate the PSD of ϕMP,OL

mes,i from
experimental data —as required by the Dessenne method— than estimating separately
the PSDs of ϕMP

tur‖,i and wMP
i from experimental data —as required by the Gendron

method [56].
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Figure 3.14: Optimized modal gains computed with the Dessenne method. The op-
timized modal gains computed with the Gendron method –figure 3.10(left)– are also
plotted for comparison.

The impossibility of applying the Dessenne method in MCAO is a serious shortcom-
ing of modal gain optimization in MCAO. Furthermore, the practical implementation of
the Gendron method is not evident either. As opposed to the SCAO case, the Gendron
method in MCAO requires the separate estimation of three PSDs: the PSDs of ϕMP

tur‖,i,
ϕMP

tur⊥,i, and wMP
i . The main difficulty lies in the estimation from experimental data

of the first two PSDs related to the atmospheric turbulence because it is not possible
to measure separately the contributions of these two terms. In particular, the only
possible method to characterize the propagation of the remaining error and estimate
the corresponding PSDs of ϕMP

tur⊥,i for a given system is by numerical simulations us-
ing a calibrated model. In fact, this is the approach that other authors had to follow
to characterize the propagation of the remaining error, but in the framework of other
different applications. For instance, J.P Veran et. al. [153] used a calibrated model
of the PUEO2 system to characterize the propagation of the remaining error in order
to estimate the PSFs of SCAO-corrected images which are in turn required for image
deconvolution. Even if the characterization of the propagated remaining error using a
calibrated model is totally valid for post-processing applications, it is clear that it is
not well adapted for real-time applications, such as the MOMGI control law, in which
it should be possible to recalculate the modal gains in situ to cope with changes in the
atmospheric turbulence conditions.

2The SCAO system of the Canada-France-Hawaii Telescope (CFHT).
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We should recall that it is nevertheless possible to neglect the propagated remaining
error term in the computation of the optimized modal gains using the Gendron method
when working at low SNRs (SNR< 10 equivalent to MV ≥ 12) —as was illustrated in
figure 3.11— at the expense of a slight loss in performance. In this case, it would only
be required to estimate two PSDs: the PSDs of ϕMP

tur‖,i and wMP
i . However, once again,

the estimation of the PSDs of ϕMP
tur‖,i from experimental data is not straightforward in

the MCAO case. It would be most probably required to combine the use of theoretical
PSDs (as the ones used in section 3.5.1) with experimental information (e.g. r0, mean
wind speed, etc.) in order to synthesize the required PSDs of ϕMP

tur‖,i.
In conclusion, the difficulties in estimating all the PSDs required to compute the

optimized modal gains in MCAO cast serious doubts on the practical implementation
of the MOMGI control law.



Chapter 4

Validation of MCAO with the

MAD system

4.1 Introduction

The European Southern Observatory (ESO) in collaboration with external research
institutes conceived an instrument prototype, the Multi-conjugate Adaptive Optics
Demonstrator (MAD), to prove the concepts of both star-oriented and layer-oriented
MCAO, and to compare them on the sky [95, 92]. The assembly, integration and testing
(AIT) and system characterization of the MAD star-oriented configuration took place
at ESO headquarters in Germany during 2004-2006. As part of my PhD training, I
had the opportunity to participate in the MAD project during this period.

As a first task, I developed a MAD simulation tool matching most of the MAD
system specificities. The MAD system characterization and the customization of the
simulation tool will be described in section 4.2. We then utilized our simulator to
estimate the performance of the star-oriented module of MAD in SCAO, GLAO, and
MCAO modes under high flux conditions. These simulation results will be presented
in section 4.3. We then carried out SCAO, GLAO, and MCAO experiments in the
laboratory and compared the performance with simulations matching all possible ex-
perimental conditions. These comparisons will be presented in section 4.5. The results
obtained in the laboratory are, to our knowledge, the first experimental results to
validate under realistic conditions the concepts of GLAO and MCAO.

The reconstruction and control laws implemented in the real system were limited to
the truncated least squares (TLS) reconstructor (section 2.3.2.3) and a two-parameter
temporal controller described in section 4.2.3.1.

143
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Figure 4.1: MAD optical design.

Understanding the discrepancies between simulation and experiments lead us to
produce a very accurate model of the MAD system. The possibility to build recon-
struction matrices based on synthetic interaction matrices produced with our MAD
simulation tool was also studied, and tested in the laboratory. The results of these
experiments are presented in section 4.6.

MAD will be installed in one of the VLT telescopes (D = 8m with a central occul-
tation of oc = 14%) located in the Paranal Observatory. On-sky tests are scheduled to
take place in the first quarter of 2007.

4.1.1 Overview of the MAD system

MAD was conceived to obtain a uniform Strehl ratio in K band over a 2’ FoV using only
natural guide stars. The implementation was done using existing technology and re-
using as much as possible key components developed in the scope of existing AO systems
at ESO. The optical layout of MAD is shown in figure 4.1. A detailed description of
the optical design of MAD can be found in [95].

The MAD corrective optics is based on two bimorph deformable mirrors (DMs).
One mirror (DM1) is conjugated to the telescope pupil for ground layer turbulence
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correction, and the second one (DM2) is conjugated at 8.5 km above the telescope
aperture. The ground DM is supported by a tip-tilt mount which allows offloading
the tip/tilt component from the ground DM in order to relax its stroke requirements.
Nevertheless, all experimental results shown in this chapter were produced without
offloading. The characterization of the DMs will be presented in section 4.2.2.

The star-oriented wavefront sensing of MAD is based on three Shack-Hartmann
wavefront sensors (WFSs) each one coupled to a NGS located within the 2 arcmin
FoV. On the other hand, the layer-oriented wavefront sensing of MAD is based on a
multi-pyramid wavefront sensor comprising eight movable pyramids (for a maximum of
8 NGSs within 2 arcmin FoV) and two CCD detectors conjugated to the same altitudes
as the deformable mirrors. The two wavefront sensing modules cannot be used on MAD
simultaneously. The characterization of star-oriented wavefront sensing module will be
presented in section 4.2.1. The layer-oriented module of MAD is described further in
reference [155].

In order to calibrate the MAD system, a calibration unit (CU1) can be placed in
the input focus. The CU1 comprises a set of illuminated fibers mounted on a XY table
to scan the full 2-arcmin FoV. Two types of fibers can be used: a single-mode fiber and
a multi-mode fiber. The former is used to emulate a point source whereas the latter
is used to emulate an extended source producing SH spots of about 2x2 CCD-pixels
large.

For testing the MAD system in the laboratory a turbulence generator called MAPS
(Multi Atmospheric Phase screens and Stars) can be placed at the MAD input focus.
The characterization of MAPS will be presented in section 4.2.4, and it has also been
presented in reference [77].

For evaluating the improvement in resolution brought by adaptive optics correction
MAD uses an infrared camera called CAMCAO (CAmera for MCAO). It is a 1’ FoV
infrared camera based on a 2048x2048-pixels infrared detector (λim = 2.2µm). CAM-
CAO is mounted on an XY table for scanning the full 2’ FoV. The pixel scale is 0.028”
at 2.2 µm, which corresponds to ≈2x2 pixels on the FWHM of the diffraction-limited
PSF.

4.2 MAD system characterization

In this section we will describe the characteristics of each MAD component, namely the
Shack-Hartmann WFSs, the deformable mirrors, the turbulence generator MAPS, and
the real-time computer. We will also present the models and approximations used in
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our MAD simulation tool, and where possible, the cross-validation of simulation results
with experimental data.

4.2.1 Shack-Hartmann WFSs

The star-oriented version of MAD comprises three Shack-Hartmann wavefront sensors
(SH-WFSs). The lenslet array of each SH-WFS is formed by 8x8 squared subapertures
(pitch = 192 µm, focal length = 3.2 mm). Each SH-WFS is mounted on an XY motion
unit capable of scanning the whole 2 arcmin FoV in order to pick up the light of the
selected natural guide star (NGS).

4.2.1.1 Sampling characteristics

The SH-WFS camera is based on a E2V CCD39 detector (80x80 CCD pixels, 24
µm/pixel, 216 ADUs). The central wavelength of operation is 700 nm. Each sub-
aperture image (alias SH spot) is sampled with a grid of 8x8 CCD pixels. The pixel
scale is equal to 0.3 ′′/pixel.

The MAD’s SH-WFSs highly undersample the diffraction-limited PSF of each sub-
aperture. Indeed, the angular size (FWHM) of the subaperture PSF is λ/d = 0.144′′

at 700nm. According to the Shannon (sampling) theorem, the sampling period should
be at least equal to the half of the FWHM of the PSF: 0.5(λ/d). In other words, the
FWHM of the PSF should be sampled with at least 2x2 pixels. The undersampling
factor is defined as the ratio between the actual pixel size and the pixel size required
for sampling at Shannon:

B
4
=

pixel scale
0.5(λ/d)

=
0.3′′

(0.5)(0.144′′)
≈ 4 (4.1)

We can say then that MAD’s SH-WFSs sample at Shannon over 4. That is, 4 times
less than the minimum required by the sampling theorem.

4.2.1.2 Slopes computation

The SH slopes are computed after dark subtraction using a classical centroid algorithm.
Hence, the centroid (xc, yc) is simply computed as:

xc =
∑

i xiIi∑
i Ii

; yc =
∑

i yiIi∑
i Ii

(4.2)
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Figure 4.2: Grid of subapertures for the Shack-Hartmann WFSs of MAD. The tele-
scope pupil and the central occultation are also shown. There is a total of 52 valid
subapertures (illuminated area > 50%). Partially-illuminated subapertures are shown
in grey.

where (xi, yi) are the coordinates of the ith pixel, and Ii denotes the intensity on the
ith pixel. By default, all 8x8 CCD pixels/subaperture are taken into account in the
computation of the centroids. The possibility to apply windowing, thresholding, and
pixel weighting has also been implemented in MAD. In this work we will only present
a study concerning the advantages of thresholding on MAD in section 4.2.1.5.

4.2.1.3 WFS simulation model

Figure 4.2 shows the Shack-Hartmann grid. A given subaperture is considered to be
valid if more than 50% of its area is illuminated. Under these considerations there is a
total of 52 valid subapertures.

As discussed in section 1.2.3, we have two possibilities to simulate a SH-WFS; either
using a geometrical or a diffractive model. We have chosen to use the diffractive model
in our MAD simulation tool, as it represents more accurately the physical response of a
SH-WFS. The telescope pupil will be sampled with 128x128 pixels. Therefore, as seen
in figure 4.2, each subaperture will be sampled with 16x16 pixels. Each subaperture
image will be computed at Shannon (i.e. 32x32 pixels). Finally, each subaperture image
needs to be binned into a grid of 8x8 CCD-pixels before centroid computations.
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Figure 4.3: (Left) Shack-Hartmann spots produced by the multi-mode calibration fiber.
(Right) Response of one of the MAD’s SH-WFSs to a tip Z2 (x-axis). The experimental
curve corresponds to the response obtained with the multi-mode fiber in the labora-
tory. Simulations were done using both the geometrical and the diffractive model of
a SH-WFS. For the case of the diffractive model, two illumination sources were used:
one point source, and one extended source matching the size of MAD’s multi-mode
calibration fiber.

4.2.1.4 Linearity characterization

The linearity of a SH-WFS is intrinsically related to its sampling characteristics (i.e. the
pixel scale). In practice, it is possible to characterize the linearity of a SH-WFS by
studying the response of the WFS to a tip (Z2) or a tilt (Z3) [133]. We will study
below the response obtained with the two types of calibration fibers available in the
MAD’s calibration unit CU1: a multi-mode fiber (producing SH spots of about 2x2
CCD-pixels), and a single-mode fiber (producing diffraction-limited SH spots which
will be undersampled by the CCD camera).

As an example, a real image of the SH spots produced by the multi-mode fiber is
shown in figure 4.3(left). For simulation purposes, we have modelled the multi-mode
calibration fiber with a Gaussian intensity profile:

O(x, y) = exp

(
−x2 + y2

2σ2
fib

)
, (4.3)

where the standard deviation σfib was obtained by fitting a 2D Gaussian to the SH
spots shown in figure 4.3(left), giving a value of σfib = 0.21′′.
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Figure 4.3(right) shows the experimental and the simulated response of the SH-
WFS to a tilt (Z3). The experimental curve corresponds to the response obtained
with the multi-mode fiber in the laboratory. Note that the experimental linear range
is about ±2.4 CCD-pixels whereas the one from simulations (diff SH+fiber) is about
±2.1 CCD-pixels. The difference is due to the Gaussian approximation used for the
calibration fiber. Note that outside the linear range the response of the SH-WFS starts
to go back towards zero. This is due to the fact that a SH spot approaching the
edge of its subaperture (±4 CCD-pixels for MAD) starts to pollute the neighboring
subapertures and biases their centroid estimations. Note that the linear regime of the
geometrical model of the SH-WFS is not limited by this effect because the SH slopes
are not computed from SH spots (section 1.2.3).

Figure 4.3(right) also shows the (simulated) response of a diffractive SH-WFS when
a point source (i.e. the single-mode fiber of MAD) is used for illumination (diff SH +
point source). Note that the response is very non-linear. This is due to the fact that
the SH spots produced by a point-source are undersampled, i.e. they are smaller than
a CCD-pixel (see section 4.2.1.1). Therefore, as seen in figure 4.3(right), the output of
the SH-WFS does not change when the (diffraction-limited) SH spots move across the
center of a CCD-pixel.

4.2.1.5 Measurement noise

In this section we will present the characterization of the measurement noise σ2
w for

the MAD’s SH-WFSs. We will also discuss the use of thresholding and windowing
techniques. As mentioned in section 1.2.2.1, the two main contributions to WFS mea-
surement noise are photon noise σ2

ph and detector noise σ2
det. From equations 1.55 and

1.56, the theoretical σ2
w can be expressed as:

σ2
w =

π2

2
1

nph

(
XT

XD

)2

+
π2

3
σ2

e−

n2
ph

(
X2

S

XD

)2

(4.4)

where nph is the number of photons per subaperture and per frame. The meaning of
the other parameters and corresponding values for MAD are listed in table 4.1.

The read-out noise σ2
e− for MAD’s CCDs was characterized in the laboratory [134].

It is slightly different for each CCD and for each CCD quadrant, but on average it is
equal to σe− = 7.5 e− rms per pixel. The CCD gain was also characterized and on
average is equal to 1.7 e−/ADU.

Figure 4.4 shows in (−−−) the plot of equation 4.4 as a function of nph. Note that
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Parameter Description Value
XT FWHM of turbulence-limited SH spots 2 pixels
XD FWHM of diffraction-limited SH spots 0.5 pixels
XS Size of window to compute centroids 8 pixels
σ2

e− CCD’s read-out noise 7.5 e−

Table 4.1: MAD parameters required to characterize the SH-WFS measurement noise.

this curve is proportional to n2
ph which means that σ2

w is dominated by the detector noise
σ2

det. We have run a simulation to verify that our SH-WFS model follows this trend.
The Gaussian calibration fiber (equation 4.3) has been used as illumination source. No
atmospheric turbulence is present. Figure 4.4 shows in (−¤−) the simulation curve.
Note that the simulation curve follows the theoretical one for high and medium flux
levels, but it diverges for low fluxes. This is due to the fact that for flux levels below
nph ≈ 102 the SH spots are immersed in noisy CCD pixels that prevent a reliable
centroid computation. The WFS measurements are not meaningful anymore and the
noise variance σ2

w explodes.

One technique that can be used to alleviate the effect of measurement noise is
thresholding [71]. Thresholding is a non-linear operation applied to the CCD frames
prior to the centroids computation. It modifies the intensities {Ii} in equation 4.2
according to the following rule:

Iu,i =

{
Ii if Ii ≥ U

0 if Ii < U
(4.5)

where U is called the threshold value, and {Iu,i} denotes the new intensity distribution.
There are other alternative ways to apply thresholding —e.g. threshold as a percent of
(Imax − Imin) [97]—, but the principle is the same.

Thresholding can effectively reduce the measurement noise variance σ2
w. However,

it may also bias the centroid computation introducing a displacement from the true
centroid position [2]. It is important to note that equation 4.4 is not valid anymore when
thresholding is applied. J. Ares and J. Arines [2] developed a theoretical expression for
σ2

w when thresholding is applied. This expression is rather complex since it is derived
from the analysis of the non-linear effects of thresholding on noise statistics. We will
rather study the effect of thresholding with numerical simulations. For example, let us
consider a flux level of nph ≈ 800 (equivalent to a star magnitude MV = 11 for MAD).
Figure 4.5 shows the centroid bias and the effective noise variance σ2

w as a function
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Figure 4.4: WFS measurement noise variance σ2
w as a function of the flux per subaper-

ture per frame (nph).

of the threshold value U (in percent of the maximum intensity Imax). We have used
once again the Gaussian calibration fiber as illumination source, and no atmospheric
turbulence was simulated.

As seen from figure 4.5(left), the centroid bias is not significant under these condi-
tions. However, as stated in reference [2], the centroid bias may become more important
for asymmetrical SH spots. Clearly, this would be the case when atmospheric turbu-
lence is present.

The advantage of thresholding, as seen from figure 4.5(right), is that the effective
noise variance σ2

w can be dramatically reduced. In the case considered here, the best
threshold is equal to zero (U = 0), which means that only the pixels with negative
intensity values are set to zero prior to the centroid computation. It is important to
note that if a pixel shows a negative intensity is simply due to the presence of additive
zero-mean Gaussian noise (in this case the read-out noise). For MAD, a thresholding
operation with U = 0 has been implemented by default to reduce effectively the variance
of measurement noise.

Figure 4.4 shows a curve of the effective measurement noise variance σ2
w for MAD

as a function of nph when a threshold U = 0 is applied. Both simulation (− ¦ −)
and experimental (− + −) results are displayed. As expected, the threshold U = 0
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Figure 4.5: Centroid bias (in pixels) and effective noise variance σ2
w (in rad2) as a

function of the threshold value (in percent of the maximum intensity Imax) for nph ≈ 800
(equivalent to a star magnitude MV = 11 for MAD).

effectively reduces the noise variance and its advantage is clearly evidenced at low flux
levels. Concerning the simulation results, note that with thresholding (U = 0) the
effective measurement noise variance σ2

w does not diverge anymore at low-flux levels,
as it was the case when no thresholding was applied (curve in −¤−). Comparing
simulation and experimental results (curves in −¦− and −+−), note that the effective
noise variance σ2

w computed from experimental data is slightly smaller than the one
obtained from simulations.

We will end up our discussion on thresholding by saying that the optimal threshold
(optimality in the sense of minimum centroid variance) can be different from U =
0 when there is an additional background level that contaminates the subaperture
images [3]. One common cause of this background level is the illumination cross-talk
that may exist between subapertures. The background level for MAD SH-WFSs was
also characterized in the laboratory [113]. It is ≈ 1% of nph. Clearly, the threshold
value U would need to be optimized for each flux level nph. However, we have decided
to use the default value U = 0 for the experiments presented in this work.

4.2.1.6 Noise covariance matrix

The noise covariance matrix (Cw) of one of the MAD’s SH-WFSs was characterized
experimentally. Figure 4.6 shows an example of Cw for a flux level of nph = 2 · 104.
There is a total of 104 slopes (slopes in x: from 1 to 52, and slopes in y: from 53 to
104). Note that the noise is effectively decorrelated between two different subapertures.
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Figure 4.6: Measurement noise covariance matrix for one of the SH-WFSs of MAD.
The flux level was nph = 2 · 104.

Also, note that partially-illuminated subapertures show a slightly higher noise variance,
simply because the flux that falls on these subapertures is less.

4.2.2 Deformable mirrors

The MAD deformable mirrors (DMs) are bimorph-technology DMs [67, 68]. Figure
4.7 shows the DMs geometry. The pupil is defined by the circle D6. Each DM has
60 actuators grouped in 5 rings. Some of the parameters of interest for both DMs are
listed in table 4.2. In the following subsections we will describe the characteristics of
these DMs.

4.2.2.1 Influence functions

The influence functions (IFs) for both DMs were measured in the laboratory using a
HASO camera1 (64x64 pixels) [135]. The influence functions of the inner-ring actuators
(ring 1 to 4) are quite different from the ones of the outer ring (ring 5). Examples of
IFs for the ground DM are shown in figure 4.8. Note that the IFs of the outer ring are
more extended whereas the ones of the inner rings are more localized.

1camera from Imagine Optic.
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ground DM upper DM
Conjugated altitude (km) 0 8.5
Number of actuators 60 60
Pupil size (D6) (mm) 60 100
Voltage range (V) ± 400 ± 400
Resonant frequencies (Hz) ≈ 300 ≈ 230

≈ 900 ≈ 750

Table 4.2: Parameters of the MAD’s bimorph deformable mirrors.

Figure 4.7: Geometry of the bimorph deformable mirrors of MAD. The pupil diameter
is D6. There is a total of 60 actuators grouped in 5 rings. (Figure credits: S. Ströbele)
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Figure 4.8: (Left) Example of influence functions of the inner ring (actuators 1,2,3, and
4). (Right) Example of influence functions of the outer ring (actuators 42,49,52, and
59). Deformations are expressed in nm/V.

We have used the actual experimental IFs (64x64 pixels) to simulate the deformable
mirrors in the MAD simulation tool. Special care has been taken to interpolate them
in order to create IF maps of the required size, i.e. 128x128 pixels for the ground DM,
and for the altitude DM the required size can be computed from equation 2.3. Since the
altitude DM spans the whole 2 arcmin FoV the required size turns out to be 210x210
pixels.

4.2.2.2 The mirror space

In this section we will study what is the effective number of degrees of freedom of the
MAD’s DMs. In principle, since MAD’s DMs have 60 actuators, then they have 60
degrees of freedom. In other words, the dimension of the mirror space generated by
each DM is equal to 60. However, as we discussed in section 1.2.1.2, this is only true
when the influence functions of a DM are linearly independent. We will study below if
this condition is satisfied by MAD’s DMs.

The geometrical covariance matrix (∆) is defined as the matrix containing the
internal products between all influence functions [52]. The matrix ∆ can be computed
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from the influence function matrix N of a DM as:

∆ = NTN . (4.6)

The matrix ∆ provides insight on the coupling existing between the influence functions
of a DM. In principle, if the IFs are strongly coupled it means that the IFs are not
sufficiently independent and the effective degrees of freedom of the DM will be reduced.
In other words, the dimension of the mirror space spanned by the IFs will be less than
the number of actuators. Figure 4.9(a) shows the matrix ∆ for the ground DM of
MAD. Note that there is a strong coupling between the outer-ring actuators. We can
expect then the effective number of degrees of freedom to be less than 60. An analysis
of the eigenmodes and eigenvalues of ∆ can help us to find out the effective number of
degrees of freedom. Figure 4.9(c) shows the eigenmodes of ∆ and figure 4.9(b) shows
the associated eigenvalues. Note that the last five eigenmodes are associated with very
low eigenvalues. We can then affirm that the effective number of degrees of freedom
for the ground DM of MAD is ≈55. A similar conclusion applies to the upper DM of
MAD.

As we will discuss in section 4.2.2.3, we will require to compute the matrix ∆−1 in
order to generate projection matrices of interest. From our discussion above, it should
be clear that the matrix ∆ is badly-conditioned. Then, the inversion must be computed
using the TSVD method and the last 5 eigenmodes should be filtered out.

4.2.2.3 Projection matrices for Zernikes

In this section we will introduce the projection matrices Zernike to Volts PZ2V and
Volts to Zernikes PV 2Z . In principle, any phase function ϕ(r) can be expressed in the
DM basis as a linear combination of influence functions ϕ(r) ≈ Nu. Also, ϕ(r) can
be approximated by a finite sum of Zernike polynomials ϕ(r) ≈ Zz. The equivalence
between the two approximations can only be guaranteed in a least-squares sense by
minimizing the criterion:

J = ‖Zz−Nu‖2 . (4.7)

The solution to this problem leads to the projection matrices PZ2V and PV 2Z :

PZ2V = ∆†NTZ (4.8)

PV 2Z = (ZTZ)†ZTN , (4.9)
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Figure 4.9: (a) Geometrical covariance matrix ∆ for the ground DM of MAD. (b)
Eigenvalues associated with the eigenmodes of ∆. (c) Representation of the eigenmodes
of ∆.
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Figure 4.10: Mean-square error in rad2 (λ = 700 nm) between pure Zernikes and best-fit
Zernikes produced by the ground DM, for the first 60 Zernike polynomials.

where ∆ is the geometrical covariance matrix introduced in section 4.2.2.2. Then, if
u or if z is known for a given phase function, the equivalent representation can be
computed as z = PV 2Zu or u = PZ2V z respectively.

The matrix PV 2Z is useful, for instance, to estimate turbulence parameters from
real-time data (section 4.2.4). On the other hand, the matrix PZ2V is useful, for
instance, to drive the DM to take the shape of a desired Zernike mode, as it was
required to calibrate the non-common path aberrations (NCPA) of MAD [75].

Figure 4.10 shows the mean-square error between a pure Zernike and the best-fit
Zernike that can be produced by the ground DM of MAD, for the first 60 Zernikes.
Note that the error increases with the radial order. However, for a given radial order
n the error decreases with azimuthal frequency m. In section 4.3.1.2 we will estimate
with numerical simulations how many Zernike modes can be effectively compensated
by the MAD system.

4.2.3 Real-time computer

The real-time computer (RTC) of MAD is based on a multi-processor architecture [33].
It is responsible for reading out the CCD frames of the SH-WFSs, computing the SH
slopes, and computing the command signals that drive the DMs. The MAD RTC
software was developed at ESO by E. Fedrigo, R. Donaldson, and C. Soenke. MAD
can operate at two sampling frequencies: fs = 207.3Hz (≈ 200Hz) and fs = 393.8Hz
(≈ 400Hz). The corresponding sampling periods are T = 4.82 ms and T = 2.54 ms. A
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Figure 4.11: Timing diagram for the real-time computer (RTC) of the MAD system.

sketch of the time diagram for MAD is shown in figure 4.11.

The CCDs read-out time (τread) has been fixed to one frame (τread = T ) regardless
of the sampling frequency. CCD frames are processed in pipeline so slope computations
start as soon as the first subaperture data is available. This helps reducing the latency
of the system. The RTC delay is defined as the time elapsed between the last CCD
data is read out and the time the DMs command signals are sent to the HVAs. The
command signals are also computed in pipeline. The RTC delay of MAD has been
characterized and it is equal to 815 µs. An additional delay is attributed to the DMs
control, which is due to the settling time of the HVAs (≈ 30µs). The voltages applied
to the DMs are held constant (i.e zero-order hold) until the next updated command
vector is computed. The total delay (τtot) at each sampling frequency is calculated in
table 4.3.

For simulation purposes we will consider that the total delay is equal to exactly 2
frames: τtot = 2T . Therefore, the equivalent pure time delay (eq. 3.6) will be equal to
one frame: τ = T . This has the advantage that the open-loop transfer function of the
MAD system can be simply approximated by:

G(z) = z−2C(z) . (4.10)

Hence, the temporal sequences of the simulated variables (e.g. slopes and voltages) at
time nT only depend on the previous values at times (n − 1)T , (n − 2)T , etc. For
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200 Hz 400 Hz
Exact sampling frequency 207.3 Hz 393.8 Hz
Sampling Period (T ) 4.82 ms 2.54 ms
Frame transfer 80 µs 80 µs
Read-out time (τread) T T

RTC delay 815 µs 815 µs
DM control delay 30 µs 30 µs
Total delay (τtot) 1.69T 1.86T

Table 4.3: Total delay computation at each sampling frequency for the MAD system.

fractional time delays, as it is actually the case for MAD, it would be necessary to
compute the temporal response within two sampling periods, and this would be too
time consuming. In any case, as it will be shown in section 4.2.3.3, the approximation
τtot = 2T is not far from the actual response.

4.2.3.1 Temporal controller

MAD is an AO system that will be operated with bright reference sources. Previous
studies have shown that the main limitation on performance in high-flux conditions
is the time delay. The time delay introduces a phase lag that reduces the correction
bandwidth of the AO system. The proportional-integral (PI) controller and the Smith
predictor are two simple controllers that can be used to reduce the effects of the time
delay [90].

The temporal controller implemented in MAD is a PI controller. The analog trans-
fer function is C(s) = gp + kI/s. The digital implementation is based on a bilinear
approximation of C(s) [35, Ch.8]. The discrete transfer function, C(z), is computed
by replacing s by 2

T

(
1−z−1

1+z−1

)
in C(s). Note also that the integral gain of the digital

controller, gI , and the integral gain of the analog controller, kI , are related by gI = kIT .
Hence, the discrete transfer function becomes:

C(z) =

(gI
2 + gp

)
+

(gI
2 − gp

)
z−1

1− z−1
. (4.11)

If C(z) = Y (z)/X(z), the difference equation of the PI controller can be written as:

y(n) = y(n− 1) +
(gI

2
+ gp

)
x(n) +

(gI

2
− gp

)
x(n− 1) . (4.12)

Note that a simple integrator can be implemented simply by setting gp = gI/2. Figure
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4.12 shows examples of the theoretical system transfer functions of MAD at 400Hz and
using a PI controller. The integral gain was set to gI = 0.5 and the effect of different
gp/gI ratios is shown. Note how the overshoot and the correction bandwidth can be
fine-tuned by changing the proportional gain gp, as we will discuss further below.

4.2.3.2 Stability constraints

The stability can be defined in the absolute or the relative sense. The absolute stability
is determined by the position of the poles of the closed-loop transfer function H =
G/(1 + G). In the continuous case, the absolute stability is assured if the poles of
H(s) lie on the left-hand side of the complex plane. In the discrete case, the absolute
stability is assured if the poles of H(z) lie within the unitary circle. On the other hand,
the relative stability is defined in terms of the gain margin (GM) and the phase margin
(PM). Both of these margins can be read directly from the Bode plots of the open-loop
transfer function (figure 4.12(a)). Larger margins increase the robustness of the control
system to unexpected changes of the system parameters. A good reference covering
these topics in detail is [36].

It is well known that for an AO system with a total of two frames delay (τtot = 2T )
and with a simple integrator controller, the absolute stability is assured if the integral
gain (gI) lies within the range 0 ≤ gI ≤ 1. The gain range is further reduced when
assuring the relative stability. For instance, for PM> 45◦ and GM> 3 dB, it can be
shown that the integral gain must lie within the range 0 ≤ gI ≤ 0.53 [22].

In the case of the PI controller, the gain margin, the phase margin, and the control
bandwidth can be fine-tuned with the proportional gain (gp), as shown in figure 4.13.
Note how in general the correction bandwidth and the phase margin increase with gp.
On the other hand, the gain margin curves present a maximum value at gp ≈ gI/2 and
then decrease with gp. Also note that for gI > 0.5 both the PM and the GM curves are
below the margins (PM= 45◦ and GM= 3 dB) regardless of the gp value. In general,
a compromise between performance and stability is required. For MAD, it was found
experimentally that at high-flux conditions a good compromise between stability and
performance is obtained when gp ≈ gI .

4.2.3.3 Rejection transfer functions

The rejection transfer function of an AO system can be estimated experimentally using
the method proposed by C. Dessenne [22], which makes use of the fundamental rela-
tionship between open-loop and closed-loop data stated in equation 3.58. Hence, the
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Figure 4.12: Examples of theoretical system transfer functions of MAD using a PI
Controller (400Hz, gI = 0.5). (a) Open-loop transfer function. (b) Closed-loop transfer
function. (c) Rejection transfer function.
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Figure 4.13: (a) Gain margin. (b) Phase margin. (c) Correction bandwidth at 200 Hz.
(d) Correction bandwidth at 400 Hz.

RTF can be estimated as:

E(jω) =

〈
ϕ̃MP

mes,i(jω)

ϕ̃MP,OL

mes,i (jω)

〉

i

(4.13)

where 〈·〉i denotes the average of the RTFs of all eigenmodes2. The procedure is as fol-
lows. First, temporal sequences of open-loop and closed-loop slopes are recorded. Then,
from equation 3.43, the corresponding temporal sequences of open-loop and closed-loop
eigenmodes are reconstructed using the reconstruction matrix RMP

LS
= Σ−1UT (equa-

2Note that the RTFs are in principle the same for all (non-filtered) eigenmodes when the same
control parameters apply to all eigenmodes. This would not be the case, for instance, for the optimized
modal gain integrator.
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tion 3.19). Note that this method is only applicable if the SH-WFS can operate in
the linear regime (figure 4.3) when recording open-loop data. We will assume that
this condition is satisfied by MAD. Finally, the Fourier transforms of the open-loop
and closed-loop eigenmodes temporal sequences are computed and substituted in equa-
tion 4.13.

Figure 4.14 shows a comparison of the experimental, simulated, and theoretical
modulus of the RTF at 200Hz, and for different PI parameters. For the simulated and
the theoretical curves we have considered that the total delay is equal to exactly 2
frames (τtot = 2T ). Note that all the curves show good agreement between them. The
experimental curves show a slightly smaller overshoot due to the fact that the total
time delay τtot is actually smaller than 2T (see table 4.3).

4.2.3.4 Reconstruction of open-loop data

The fundamental relationship between open-loop and closed-loop data used above to
estimate the RTFs experimentally, can also be used to reconstruct open-loop data from
closed-loop data. As we will discuss in section 4.2.4.2, this will be useful to estimate
turbulence parameters from closed-loop data.

Let us consider once again equation 3.58, but since we are dealing here with discrete-
time systems we will express it in the z-domain:

ϕMP
mes,i(z) = Ei(z) ϕMP,OL

mes,i (z) . (4.14)

Recalling that Ei is defined as Ei = 1/(1+Gi) (eq. 3.34), we can then solve equation 4.14
for ϕMP,OL

mes,i (z) rewriting it as:

ϕMP,OL

mes,i (z) = [1 + Gi(z)]ϕMP
mes,i(z) . (4.15)

Note that this is a general expression to reconstruct open-loop data that can only be
applied if the open-loop transfer function, Gi(z), is well characterized. In order to
proceed, let us assume once again that Gi(z) is given by equation 4.10, i.e. we are
considering once again that the total delay is equal to exactly 2 frames (τtot = 2T ).
Then, equation 4.15 can be rewritten as:

ϕMP,OL

mes,i (z) = ϕMP
mes,i(z) + z−2Ci(z) ϕMP

mes,i(z) . (4.16)

The following step requires to recall the block diagram shown in figure 3.6 in order to
realize that the correction eigenmode is given by ϕMP

cor,i(z) = Ci(z) ϕMP
mes,i(z). Taking
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Figure 4.14: Comparison of experimental, simulated, and theoretical modulus of the
rejection transfer functions (RTF) of MAD at 200Hz and for different PI parameters:
(Top) gI = 0.1, (Middle) gI = 0.3, (Bottom) gI = 0.5.
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into account this relationship we can finally express equation 4.16 as:

ϕMP,OL

mes,i (z) = ϕMP
mes,i(z) + z−2ϕMP

cor,i(z) . (4.17)

The corresponding equation in the discrete-time domain is simply given by:

ϕMP,OL

mes,i (n) = ϕMP
mes,i(n) + ϕMP

cor,i(n− 2) . (4.18)

Recalling equations 3.43 and 3.45, it is straightforward to show that the temporal
sequences of the vectors ϕMP

mes(n) and ϕMP
cor (n) can be estimated from closed-loop slopes

s(n) and DM voltages u(n). Finally, the whole procedure to reconstruct open-loop
data (in the eigenspace) is summarized by the following equations:

ϕMP
mes(n) = RMP

LS
s(n) (4.19)

ϕMP
cor (n) = VTu(n) (4.20)

ϕMP,OL
mes (n) = ϕMP

mes(n) + ϕMP
cor (n− 2) . (4.21)

Although we have shown above how to reconstruct open-loop data in the eigenspace, the
same procedure can be applied to reconstruct open-loop data in any other modal basis
as long as the required projection matrices are available. As we mentioned already, we
will use this procedure in section 4.2.4.2 to reconstruct open-loop data in the Zernike
modal basis in order to estimate some turbulence parameters of MAPS.

4.2.4 Atmospheric turbulence generator

Atmospheric turbulence is emulated in the laboratory with the turbulence generator
MAPS (Multi Atmospheric Phase screens and Stars). It emulates a three-layered evolv-
ing atmosphere using rotating phase screens that were encoded with aberrations that
follow von Kármán statistics [74]. There is a total set of four phase screens (PS1, PS2,
PS3, and PS4), each one of them characterized by a given r0 and L0. The rotating
speed of each phase screen can be tuned to emulate different wind profiles between 0
and 35 m/s. The natural guide stars (NGSs) are emulated by visible/IR light transmit-
ting fibers. Figure 4.15 shows the distribution of NGSs emulated by MAPS covering a
2 arcmin FoV.

MAPS was originally conceived to emulate median (0.73′′) and good (0.46′′) seeing
conditions of Paranal observatory [94]. The original design parameters (r0 and L0)
per emulated layer are listed in table 4.4. The design parameters were later modified
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Figure 4.15: Distribution of the natural guide stars (as seen from CAMCAO) emulated
by MAPS and covering a 2 arcmin FoV. The diameters of the concentric circles are 34,
54, 81, and 108 arcsec.

Median seeing Good seeing
Height PS r0 (500 nm) L0 PS r0 (500 nm) L0

Layer 1 0 km 1 20 cm 22 m 2 30 cm 22 m
Layer 2 6 km 2 30 cm 22 m 3 50 cm 22 m
Layer 3 8.5 km 3 50 cm 22 m 4 80 cm 22 m

Global r0 (500 nm) 14.4 cm 22.4 cm
Equivalent seeing (500 nm) 0.73′′ 0.45′′

FWHM of PSF (500 nm) 0.58′′ 0.34′′

Table 4.4: Original design parameters for MAPS conceived to emulate median and good
seeing conditions of Paranal Observatory. All values are referred to a pupil diameter
of 8 m. The physical size of the pupil on MAPS is 15 mm.
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to force the FWHM of the turbulence PSF to be equal to 0.73′′ (at λ = 500nm) for
the PS1+2+3 combination and 0.45′′ (at λ = 500nm) for the PS2+3+4 combination
because it was thought at that point that the FWHM and the seeing were equivalent.
In fact, the FWHM of the long-exposure turbulence PSF is always smaller than the
seeing value when the outer scale is finite (L0 = 22m in our case). We will discuss
further this issue below.

4.2.4.1 FWHM v. L0

The seeing (s) is defined as the angular size (FHWM) of the long-exposure PSF pro-
duced by Kolmogorov turbulence (L0 →∞). It can be computed from r0 as [17]:

s = 0.9759
λ

r0
. (4.22)

For von Kármán turbulence, the FWHM does depend on the outer scale L0. C. Dessenne
[22] studied for the first time this dependence with numerical simulations and plotted
curves of FWHM versus L0. R. Conan [17] studied thoroughly the effect of L0 on dif-
ferent parameters of interest in adaptive optics, including the FWHM. The analytical
expressions developed by R. Conan involve integrals that can only be solved numer-
ically. Based on R. Conan expressions, A. Tokovinin [143] developed the following
approximation for the FWHM:

FWHM = s

√
1− 2.183

(
r0

L0

)0.356

. (4.23)

Figure 4.16 shows a plot of FWHM at 500nm as a function of r0 for both Kolmogorov
and von Kármán (L0 = 22m) statistics. For instance, note that for the PS1+2+3
combination (r0 = 14.4cm), the FHWM is equal to 0.73′′ when L0 → ∞ and equal to
0.58′′ when L0 = 22m. We have also validated this through numerical simulations, as
shown in figure 4.17.

Since the design of the MAPS phase screens was later modified in order to make the
FWHM of the long-exposure turbulence PSF equal to the seeing value, the true seeing
became actually stronger. We will present below the experimental characterization of
the MAPS phase screens delivered to ESO, and show the true seeing value obtained in
the laboratory.
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from simulations when using the MAPS original design parameters intended to emulate
seeing conditions at Paranal Observatory (s = 0.73′′). (Right) A cut of the PSF along
the x-axis and its Gaussian fit. The FWHM is approximately 0.58′′.
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4.2.4.2 Phase screens characterization

This section presents the experimental characterization of the MAPS phase screens in
terms of their r0 values. The estimation of the r0 values was based on a best-fit of the
variance distribution of Zernike coefficients. This method will be detailed below. Also,
two different procedures were followed to get the required experimental data: one static
and one dynamic, as described below.

Static characterization

Each of the four MAPS phase screens (PS1, PS2, PS3, PS4) was characterized following
the static procedure. The experimental data for each PS collected by J. Kolb consisted
on 20 independent phase map realizations sampled on the telescope pupil (D = 8m)
using a HASO camera (53x53 subapertures, λ =500nm). The phase maps were pro-
jected onto the first 300 Zernikes, and the (experimental) variance distribution of the
Zernike coefficients was computed (Figure 4.18). Note that the last radial orders are
affected by numerical errors related to the pixelization of the considered phase maps
(53x53 pixels size). Therefore, the last radial orders were not considered in the fitting
of r0.

The von Kármán theoretical variance distribution of Zernike coefficients is given by
equation 1.35. It depends on both L0 and r0, with L0 mostly affecting the variance of
the first radial orders. In order to avoid the effect of L0, the first radial orders were
not considered in the fitting of r0.

Figure 4.18 shows the best fits for the four MAPS phase screens. We considered
a fixed value of L0 = 22m. The fitting was limited to radial orders 9 ≤ n ≤ 12
(i.e. Zernikes 46 to 91). The estimated r0s corresponding to the best-fits are also
shown in figure 4.18. Note that the theoretical and experimental variance distributions
also match well for the first radial orders, except for PS3 which is characterized by
stronger tip-tilt variances not matching with the theoretical L0 = 22m value.

The static characterization was useful to verify that the phase screens follow the
desired turbulence statistics in a wide spatial-frequency range, as shown in figure 4.18.
However, the r0s should be estimated using a higher number of phase maps realizations.
This was possible to achieve with the dynamic procedure described below.

Dynamic characterization

We will now present a dynamic method that can be used to estimate the variance
distribution of Zernike coefficients, from which the estimation of r0 can follow. This
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Figure 4.18: Static characterization of phase screens: experimental and best-fit variance
distribution of Zernike coefficients for PS1, PS2, PS3, and PS4. The estimated r0 values
are shown as well.

method was originally proposed and validated by C. Dessenne [22]. Also, it has been
already implemented in the NAOS system [50]. Let us describe below this method as
it was applied in MAD [100].

Each PS was mounted on MAPS, one at a time, at an equivalent altitude of 0 km
(i.e. conjugated to the telescope pupil). The PS rotation was enabled and the MAD
system was operated in closed-loop in SCAO mode, and temporal sequences of closed-
loop data (i.e. slopes and DM voltages) were collected. Then, based on the procedure to
reconstruct open-loop data from closed-loop data described in section 4.2.3.4, open-loop
data in the Zernike modal basis was reconstructed using the following equations:

ϕmes(n) = PV 2Z RTLSs(n) (4.24)

ϕcor(n) = PV 2Zu(n) (4.25)
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ϕOL
mes(n) = ϕmes(n) + ϕcor(n− 2) , (4.26)

where RTLS is the SCAO TLS reconstruction matrix used to close the loop, and PV 2Z is
the volts-to-Zernikes projection matrix presented in equation 4.9. The vectors ϕmes(n),
ϕcor(n) and ϕOL

mes(n) are vectors containing Zernike coefficients. Note that since in this
method the phase reconstruction is limited to the ground DM space, the number of
Zernike coefficients that can be estimated can not be as large as in the static character-
ization. For the dynamic characterization we chose to limit the reconstruction to the
first 60 Zernike coefficients.

One of the advantages of this method is that a large number of samples can be
accumulated. As a result, the estimation of the experimental variance distribution of
Zernike coefficients becomes more accurate. For MAD, we chose to collect temporal
sequences of closed-loop data with 5000 contiguous samples. However, we should note
that all these samples are not statistically independent, as it was the case for the
static characterization. Indeed, the samples are spatio-temporally correlated, and the
degree of correlation depends on the PS rotating speed, the sampling frequency, etc.
Nevertheless, this was not a practical problem considering the large number of samples
collected.

The experimental and the best-fit variance distribution of the Zernike coefficients for
PS1, PS2, and PS3 at λ =500nm are shown in figure 4.19. The fitting of r0 was limited
to radial orders 4 ≤ n ≤ 6 (Zernikes 15 to 28). Note that the tip-tilt variances for PS2
and PS3 are higher than expected. This is due to the fact that as the phase screens
rotate there is an additional wobble that increases the power on these modes [74].
However, the fitting of r0 is not affected by this effect because we are not taking into
account the lower radial orders in the fitting. Note that the estimated r0s with this
method are slightly different from the values estimated with the static method.

The combination PS1+2+3 was also characterized with the dynamic procedure.
This is the combination of PSs that we have used for all the laboratory experiments
presented in this work. Figure 4.19 also shows the variance distribution of Zernike
coefficients for this combination of phase screens, conjugated at 0, 6 and 8.5 km respec-
tively. Note that the estimated global r0 is equal to 11.9 cm at 500 nm. This is totally
in accordance with the expected value computed from the individual r0s as [127]:

r0 =

(∑

i

r0
−5/3
i

)−3/5

. (4.27)
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Figure 4.19: Dynamic characterization of phase screens: experimental and best-fit
variance distribution of Zernike coefficients for PS1, PS2, PS3, and the combination
PS1+2+3. The estimated r0 values are shown as well.

The corresponding seeing is equal to 0.84′′ and, according to equation 4.23, the
FWHM at 500nm is approximately 0.83′′. Finally, table 4.5 summarizes the MAPS
turbulence parameters. We will use these values throughout this work and refer to
them simply as the PS1+2+3 profile.

4.2.4.3 Simulation of MAPS turbulence profile

The MAD simulation tool was customized to reproduce the turbulence profile generated
by the MAPS PS1+2+3 combination. We have simulated three phase screens following
the method described in section 1.1.7, and matching the parameters shown in table 4.5.
As described in section 1.1.7, the temporal evolution of the turbulence was simulated
by shifting the phase screens at each iteration in accordance with the wind speed profile
shown in table 4.5.
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PS1 PS2 PS3
height (km) 0 6 8.5

L0 (m) 22 22 22
r0i (cm) 15.6 29.6 39.0
Weight 0.64 0.22 0.14

Vwind (m/s) 7 13 30
global r0 11.9 cm @ 500nm

seeing 0.84′′ @ 500nm
mean wind speed V 13.1 m/s

τ0 2.8 ms @ 500nm

Table 4.5: Parameters of the MAPS turbulence generator for the combination of phase
screens PS1+2+3. All values are referred to a pupil diameter of 8 m. The physical size
of the pupil on MAPS is 15 mm.

In order to validate that the spatial and temporal statistics produced by our tur-
bulence simulator match the ones of the PS1+2+3 profile (table 4.5), we carried out
the following experiment. The turbulence simulator was run for 2048 iterations. The
sampling frequency was set to 400 Hz. At each iteration the resultant phase pertur-
bation in the telescope pupil was directly projected onto the first 100 Zernikes. The
variance distribution of the Zernike coefficients was computed from the accumulated
samples and it is shown in figure 4.20. The experimental variance distribution of the
first 60 Zernikes obtained from the dynamic characterization of the MAPS PS1+2+3
combination is also shown in figure 4.20 for comparison. Note that our turbulence
simulator follows the desired spatial statistics.

In order to validate the temporal characteristics of the simulated turbulence, we have
also computed from the accumulated samples the temporal spectra of each Zernike coef-
ficient, and verify that they follow the theoretical properties described in section 1.1.6.1.
As an example, figure 4.21 shows the temporal spectra of Zernike coefficients number 8
and 16. The corresponding cut-off temporal frequencies (νc) computed with equation
1.41 are νc = 1.96 Hz for Zernike number 8, and νc = 2.95 Hz for Zernike number 16.
Note how the temporal PSDs follow the theoretical asymptotic behavior presented in
equation 1.40. That is, at low temporal frequencies (ν ¿ νc) the PSDs follow a ν0

power law whereas at high temporal frequencies (ν À νc) the PSDs follow a ν−17/3

power law.
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Figure 4.20: Modal expansion of the phase perturbation generated with MAPS 1+2+3
turbulence profile (r0 = 11.9cm @ 500nm, L0 = 22m). Simulated and experimental
data was expanded in 100 and 60 Zernikes respectively. We see that both sets of data
are in agreement with the theoretical curve of von Kármán statistics.
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Figure 4.21: Temporal power spectral density (PSD) of (Left) Zernike number 8 (νc =
1.96 Hz), (Right) Zernike number 16 (νc = 2.95 Hz).
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Figure 4.22: Comparison of the isoplanatic angle θ0 estimated from both experimental
and simulation results.

4.2.4.4 Isoplanatic angle

The isoplanatic angle θ0 was also characterized in MAD using the SR estimations in
the FoV. It is important to note that the theoretical θ0 given by equation 1.75 is only
valid for Kolmogorov turbulence. For the MAPS PS1+2+3 profile, the (Kolmogorov)
isoplanatic angle is equal to θ0 = 2′′ at 0.5 µm, and θ0 = 12′′ at 2.2 µm. For the case of
von Kármán turbulence, the outer scale L0 will have an impact on the actual isoplanatic
angle. The effect of L0 on θ0 was studied by R. Conan [17]. As it is well known, the
outer scale L0 affects mostly the properties of low-order turbulent modes, and their
angular correlation functions are not an exception. In general, the angular correlation
functions of low-order modes decay more smoothly due to L0 and as a consequence the
effective isoplanatic angle becomes larger.

The effective isoplanatic angle θ0 can nevertheless be estimated from real data by
using its definition (section 1.2.7.2) and the Marechal approximation (eq. 1.70). Indeed,
recalling that θ0 is defined as the angle from the GS at which the mean-square wavefront
error σ2 is equal to 1 rad2, the equivalent SR loss is SR = exp(−1) ≈ 0.37. Figure 4.22
shows the (normalized) SR as a function of the off-axis angle. Both experimental and
simulated curves are shown. The angles at which the normalized SR curves are equal
to SR = 0.37 give and estimate of the effective θ0. The estimated θ0 from experimental
data is θ0 = 28 ± 3′′, and the one from simulations is θ0 = 23 ± 1′′. These results are
in good agreement.
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Figure 4.23: Number of photons per SH-WFS subaperture and per frame as a function
of star magnitude, and for two sampling frequencies: 200 Hz, and 400 Hz.

4.2.5 Flux level characterization

The star magnitude (MV ) and the number of photons per SH subaperture and per
frame (nph) are related by the following expression:

nph =
Z0 10−0.4MV

fs
(4.28)

where Z0 is the zero point3 and fs is the sampling frequency. The zeropoint of MAD
was characterized in the laboratory and it is equal to Z0 = 8.86 × 109 photons per
subaperture per second. Figure 4.23 shows a plot of nph versus MV . Note that it
is foreseen that the MAD system will be tested on the sky using only bright GSs
(MV < 10).

4.3 Simulation studies

In this section we will present the simulation studies that aim at exploring the parameter
space of the MAD system in SCAO, GLAO and MCAO modes. The performance will
be evaluated at 2.2 µm in terms of Strehl ratio (SR) and also, for the GLAO and MCAO
modes, in terms of the gain in ensquared energy in a square of 0.1”x0.1”, denoted as
GEE0.1 (section 1.2.6).

3The zero point is defined as the number of photons coming from a zero-magnitude (MV = 0) star
that are actually detected by the WFS’s CCD per unit area and per second. It takes into account the
transmission of all the optical components, the detection bandwidth ∆λ, and the quantum efficiency
of the CCD.
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Unless otherwise varied for a particular study, the simulation parameters and system
specificities that were fixed for all the simulation studies presented in this section are:

- Operation under high-flux conditions. We have fixed the star magnitude to MV =
9.4, which roughly corresponds to the flux levels we have worked with in the
laboratory experiments (section 4.5).

- MAPS PS1+2+3 turbulence profile (Table 4.5).

- Control law: TLS reconstruction matrix RTLS and PI temporal controller (sec-
tion 4.2.3.1). The effect of different filtered eigenmodes in the matrix RTLS and
different PI gains will be evaluated.

- SH-WFSs slopes computation: simple centroid algorithm with threshold set to
U = 0. All CCD pixels (8x8) taken into account in the computation of the
centroid.

- All SH-WFSs are considered to be identical. The true relative orientations be-
tween the different WFSs will be taken into account in the simulations that will
be presented in section 4.5.

4.3.1 SCAO mode

The MAD system operating in SCAO mode consists of only the ground DM and a
single SH-WFS. We will consider that the GS is located at the center of the FoV.

The MAD’s SCAO interaction matrix has 104 rows (2 measurements —sx and sy—
for each of the 52 valid subapertures shown in figure 4.2) and 60 columns (60 actuators
of the ground DM). Figure 4.24 shows the eigenmodes and the associated normalized
singular values of the MAD’s SCAO interaction matrix. Note that the first eigenmodes
(associated with high sensitivities) are very similar to the first Zernike polynomials. On
the other hand, the last eigenmode (associated with the lowest sensitivity) corresponds
to the piston mode.

4.3.1.1 SR v. control law parameters

The purpose of this study is to determine what are the best control law parameters
that result in the maximum SR at 2.2µm under high-flux conditions (MV = 9.4) and
for the MAPS PS1+2+3 turbulence profile (s = 0.84”, τ0 = 2.8 ms). The parameters
explored are the number of filtered modes of RTLS , and the gains of the PI temporal
controller. The proportional and the integral gain were nevertheless set to the same
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Figure 4.24: (Top) Normalized singular values associated with the eigenmodes of the
SCAO interaction matrix. (Bottom) Eigenmodes of the SCAO interaction matrix.
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Figure 4.25: Maximum performance attained for different PI gains and number
of filtered modes when operating at high-flux conditions (MV = 9.4) and for the
MAPS1+2+3 turbulence profile (s = 0.84′′). (Left) Sampling frequency 200 Hz.
(Right) Sampling frequency 400 Hz.

value (gI = gp). Figure 4.25 shows the simulation results for both sampling frequencies:
200 Hz and 400 Hz.

The maximum SR values were 43.9% @ 200 Hz and 45.8% @ 400 Hz. Note that
both maxima were attained when gI = gp = 0.5 and when the number of filtered modes
was 8.

4.3.1.2 SR v. atmospheric variations

The purpose of this study is to determine what are the expected variations in SR at
2.2 µm due to changes in atmospheric conditions i.e. seeing s and coherence time τ0.
We have studied the case for both sampling frequencies: 200 Hz and 400 Hz, and we
have fixed the controller parameters to the ones that provide the best performance at
high-flux levels (section 4.3.1.1), namely, the PI gains to gI = gp = 0.5 and the number
of filtered modes to 8.

Figure 4.26(left) shows the variation in SR as a function of the seeing s. The
mean wind speed was fixed to V = 13.1 m/s, which is the median value for Paranal
Observatory. Note that no major gain is obtained at 400 Hz with respect to 200 Hz
for this value of V . In this figure it is also indicated in (−−−) the performance that
would be obtained after compensating perfectly all Zernikes up to radial order nmax.
These theoretical curves were obtained as explained below. Assuming a Kolmogorov
turbulence model, the residual variance after correcting all Zernikes up to radial order
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Figure 4.26: (Left) Variations in SR as a function of the seeing value (fixed V =
13.1 m/s). (Right) Variations in SR as a function of coherence time τ0 (fixed s = 0.84′′).

nmax is given by [15]:

σ2
nmax

= 0.458 (nmax + 1)−5/3

(
D

r0

)5/3

, (4.29)

where r0 and the seeing s are related by equation 4.22. The SR curves shown in
(−−−) were computed using the approximation SR ≈ exp(−σ2

nmax
) for the radial

orders nmax = {6, 7, 8}. From these plots we can see that the curves obtained from
the simulations follow quite closely the slope predicted by the theoretical expressions.
Furthermore, we can see also that the maximum performance obtained with MAD is
equivalent to the performance obtained with an ideal SCAO system correcting perfectly
all Zernikes up to nmax = 7, i.e. a total of 36 Zernikes.

Figure 4.26(right) shows the SR as a function of the coherence time τ0. The seeing
value was fixed to s = 0.84”. Note how the system suffers an important loss in per-
formance at 200 Hz for τ0 < 2 ms. The loss in performance at 400 Hz occurs when
τ0 < 1 ms. As expected, higher sampling frequencies are advantageous when the atmo-
spheric turbulence is evolving fast. Recall that the median coherence time in Paranal
Observatory is τ0 = 3.4 ms.

4.3.1.3 SR v. star magnitude

In section 4.3.1.1 we studied the performance optimization under high-flux conditions
by fine-tuning the controller parameters (number of filtered modes and PI gains). In
this section we will study how the performance varies when the flux level changes.
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Figure 4.27: (Left) Estimated performance of MAD in SCAO mode (400 Hz) as a
function of star magnitude, and for different integral gains. Strehl values are given
for the GS position. The performance obtained when using the optimized modal gain
integrator is also shown. (Right) Optimized modal gains for each star magnitude
considered.

Clearly, in order to optimize the performance at each flux level we would require to
fine-tune the number of filtered modes and PI gains for each case. However, in this
study we will not proceed in this way. Instead, we will let the optimized modal gain
integrator (OMGI) find the best controller parameters to be applied at each considered
flux level.

The optimized modal gain integrator (OMGI) was widely studied in chapter 3. For
this study, we have selected the controlled modes to be the eigenmodes of the SCAO
interaction matrix (figure 4.24). We have applied the Dessenne method (section 3.6)
to determine the optimized modal gains for these controlled modes. Figure 4.27(right)
shows the optimized modal gains for each of the star magnitudes considered in this
study.

Figure 4.27(left) shows the performance obtained with the OMGI control law as a
function of the guide star magnitude MV . The sampling frequency was set to 400 Hz.
For comparison, the curves of SR v. star magnitude for some non-optimized cases are
also shown in figure 4.27(left). For all these non-optimized cases we have made the
following choice of parameters:

• Only one eigenmode (i.e. piston) was filtered out in RTLS .

• The PI controller was set to the simple integrator mode (i.e. gp = gI/2).

• No thresholding was applied in the computation of the SH centroids.
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Let us now discuss the results presented in figure 4.27. Note that the OMGI control
law always gives a better performance. However, the gain in performance brought
by the OMGI control law is not dramatic for the MAD system. In fact, note from
figure 4.27(right) that for a given star magnitude, the modal gains are actually quite
similar for all the controlled modes. A very similar performance can be easily achieved
by setting the single gain of a simple integrator controller to the mean of the modal
gains. In any case, note that the integral gains that lead to a better performance are
higher (gI ≥ 0.3) for high flux levels (MV < 10), medium (0.2 ≤ gI ≤ 0.3) for medium
flux levels (MV = 11), and low (gI ≤ 0.2) for low flux levels (MV = 12). As was already
discussed in chapter 3, this trend is due to the fact that higher integral gains increase
the correction bandwidth of the AO system but also lead to stronger noise propagation.
At high flux levels the SNR is also high and the integral gain can be as high as possible,
i.e. it is only limited by the stability constraints. On the other hand, at low flux levels
the SNR is also low and the integral gain needs to be decreased in order to prevent a
strong noise propagation.

It is interesting to note from figure 4.27(left) that at even lower flux levels (MV = 13)
the performance is SR = 0 regardless of the integral gain used. Let us discuss below why
this happens. From figure 4.23, we can see that the number of photons nph for a star
magnitude MV = 13 is nph ≈ 102. We showed in figure 4.4 (see the curve shown in −¤−
corresponding to the no thresholding case) that at these flux levels the effective variance
of the WFS measurement noise (σ2

w) became very large. As we explained at that point,
the SH spots are totally immersed in noisy CCD pixels and it is not possible anymore
to perform a reliable centroid computation. As a consequence, the system cannot
operate anymore and the performance is null (SR = 0). However, as we discussed in
section 4.2.1.5, it would be possible by optimizing the centroid computation algorithm
(e.g. with thresholding, windowing and/or pixel weighting) to operate at lower flux
levels. For instance, when using a thresholding value of U = 0 (i.e. removal of negative
pixel intensities) we managed to obtain with numerical simulations a maximum SR
of 8% at MV = 13 (This SR value was obtained with an integral gain of gI = 0.1).
In conclusion, the optimization of the performance at low-flux conditions requires to
optimize both, the centroid computation algorithm and the controller parameters. A
full study concerning the optimization of the MAD system at low-flux levels was beyond
the scope of this work.
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Figure 4.28: Position of the guide stars for the 1’ FoV (red) and the 2’ FoV (black)
configurations. The performance cuts will be evaluated along the line Y = 0 (blue).

4.3.2 GLAO mode

The MAD system operating in GLAO mode uses the three SH-WFSs for probing the
turbulence, but only the ground DM for wavefront correction. We will consider two
FoV configurations: 1’ FoV and 2’ FoV. The three GSs will be placed in an equilateral
triangle inscribed in a circle of 1’ and 2’ respectively, as shown in figure 4.28. We
have considered that all NGSs were of the same magnitude MV = 9.4, which actually
corresponds to the experimental conditions we have worked with in the laboratory using
the guide stars emulated by MAPS.

The MAD’s GLAO interaction matrix (Mint) has 312 rows (104 measurements
per SH-WFS times three) and 60 columns (60 actuators of the ground DM). The
eigenmodes and the associated normalized singular values of the GLAO interaction
matrix are shown in figure 4.29. Note that the GLAO and the SCAO eigenmodes and
singular values are very similar.

4.3.2.1 Computation of the GLAO reconstruction matrix

There are two main approaches that have been proposed so far to compute a GLAO re-
construction matrix. Both approaches are in any case based on a least-squares approach
(section 2.3.1.1). The first approach is straightforward: If we denote as Mint = UΣVT

the SVD decomposition of the GLAO interaction matrix, the reconstruction matrix
is given by the corresponding truncated least-squares reconstructor RTLS = VΣ−1

filU
T

(section 2.3.2.3). Note that the RTLS matrix becomes a 60x312 matrix. The vector-
matrix multiply u = RTLSs that generates the ground DM’s command vector u can
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Figure 4.29: (Top) Normalized singular values associated with the eigenmodes of the
GLAO interaction matrix. (Bottom) Eigenmodes of the GLAO interaction matrix.
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also be expressed as:

u = RTLSs

= [R1R2R3] [s1s2s3]
T

= R1s1 + R2s2 + R3s3 , (4.30)

where the matrix Rk is the 60x104 partition of RTLS associated with the kth WFS.
These matrix partitions play a role in the second approach, as we will describe below.

Let us recall from section 1.2.9 that in a GLAO system each WFS measures the
contribution of the ground turbulent layer plus the contribution of the higher turbu-
lent layers in the direction of the corresponding GS. In principle, an estimate of just
the ground-layer wavefront perturbation can be obtained by averaging the wavefronts
measured by all WFSs. The contributions of the higher-altitude layers would be then
averaged out. Inspired on this hypothesis, the second approach consists in adding up
all WFS measurements sav = s1 + s2 + s3 and then multiplying the vector sav by an
averaged reconstructor —denoted as Rav— and computed as:

Rav =
1
3

(R1 + R2 + R3) . (4.31)

Then, the ground DM’s command vector u would be generated with the vector-matrix
multiply:

u = Ravsav . (4.32)

Note that the two approaches (equations 4.30 and 4.32) are totally equivalent if and
only if all matrix partitions are identical, i.e. R1 = R2 = R3, and this could only be
true if:

1. All SH-WFSs were identical (same orientation, same pixel scale, etc.).

2. The ground DM were perfectly conjugated to the telescope pupil (h1 = 0 km).

3. There were no FoV-dependent aberrations affecting in a different way the pupil
imaging of the SH-WFSs positioned at different angles in the FoV.

This is actually the case for the GLAO simulations we will present in this section. How-
ever, in reality, each one of the MAD’s SH-WFS is oriented in a different way4 leading to
different matrices Rk. In addition, in practice there are always FoV-dependent (static)
aberrations. Therefore, the matrix partitions are never in practice the same.

4The true orientations of the SH-WFSs of MAD will be determined in section 4.4 and they will be
taken into account in the simulations presented in section 4.5.
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The second approach has drawn much attention due to the fact that Rav is a SCAO-
size (i.e. 60x104) matrix. Therefore, the computing power that would be required to
perform the vector-matrix multiply Ravsav would be, for the case of MAD,≈3 times less
than the one required to perform RTLSs. This is a feature particularly attractive for the
high-order GLAO systems envisaged for the future Extremely Large Telescopes [32, 84].
However, the performance obtained with the averaged reconstructor Rav under realistic
conditions remains to be investigated.

In this work we have only investigated, both with simulations and with experiments,
the first reconstruction approach. In the following sections we will study the high-flux
optimization of the GLAO mode based on this reconstruction approach.

4.3.2.2 GLAO performance v. filtered modes

In this section we will study the variations of the GLAO performance with respect to
the number of filtered modes in the TLS reconstruction matrix RTLS = VΣ−1

filU
T . We

will consider the following numbers of filtered modes: {1, 5, 8, 13, 20}. The sampling
frequency was set to 400 Hz, and the PI gains were set to gI = gp = 0.3. We have
considered the 1’ FoV and the 2’ FoV configurations shown in figure 4.28 for positioning
the GSs.

Figure 4.30 shows the GLAO performance profiles obtained along the x-axis for
the two FoV configurations, and for all the considered number of filtered modes. The
plots in (a) and (b) show the profiles of SR and GEE0.1, respectively, for the 1’ FoV
configuration. Note that there is a very little impact on the performance profiles from
the change of the number of filtered modes. Also, note that the maxima occur at x = 0.
The maximum performance at x = 0 (SR = 33.5%, and GEE0.1 = 6.4) is obtained for
the case of 13 filtered modes. Note also that filtering just one eigenmode (i.e. piston)
gives the lowest performance of the considered cases.

The plots in (c) and (d) of figure 4.30 show the profiles of SR and GEE0.1, respec-
tively, for the 2’ FoV configuration. Once again, we put in evidence the little impact of
the number of filtered modes on the performance profiles. We can nevertheless remark
that the performance profiles are slightly more uniform when filtering only one eigen-
mode. Filtering more eigenmodes makes the performance slightly higher at the center
of the FoV while slightly lower at the borders.
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GLAO performance v. filtered modes
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Figure 4.30: GLAO performance at 2.2µm as a function of the number of filtered modes
in RTLS (Mv = 9.4, g = 0.3, fs = 393.8 Hz, MAPS1+2+3). The performance profiles
are evaluated along the x-axis. (a) SR profiles for the 1’ FoV configuration. (b) GEE0.1

profiles for the 1’ FoV configuration. (c) SR profiles for the 2’ FoV configuration. (d)
GEE0.1 profiles for the 2’ FoV configuration.
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4.3.2.3 GLAO performance v. PI gains

In this section we will study the variations of the GLAO performance with respect to
the PI gains (gI = gp) of the temporal controller. We will consider the following PI
gains: g = {0.1, 0.2, 0.3, 0.4, 0.5}. The sampling frequency was set to 400 Hz, and the
number of filtered modes in RTLS was set to 13. We have once again considered the 1’
and the 2’ FoV configurations presented in figure 4.28.

Figure 4.31 shows the GLAO performance profiles obtained along the x-axis for the
two FoV configurations, and for all the considered PI gains. The plots in (a) and (b)
show the profiles of SR and GEE0.1, respectively, for the 1’ FoV configuration. As we
already remarked in section 4.3.2.2, the performance of the 1’ FoV configuration reaches
its maximum at the center x = 0. Note that the minimum performance at x = 0 is
obtained when g = 0.1 whereas the maximum is obtained when g = 0.5. Indeed,
since the system is operating at high flux levels (MV = 9.4) the noise propagation is
not strong. Therefore, increasing the correction bandwidth by increasing the PI gains
translates into higher performances at x = 0.

Let us now consider the plots in (c) and (d) of figure 4.31. These figures show the
profiles of SR and GEE0.1, respectively, for the 2’ FoV configuration. Note that, apart
from the g = 0.1 case which gives a lower SR profile, the performance profiles do not
vary much with respect to changes in the PI gains.

4.3.2.4 GLAO contour plots

In this section we will evaluate the GLAO performance at 2.2µm in the whole FoV.
Figure 4.32 shows the GLAO contour plots for the 1’ and the 2’ FoV configurations.
The black stars (F) indicate the positions of the GSs. The performance was evaluated
at the positions indicated with a small cross (+) and then interpolated to generate
the iso-Strehl lines in the whole FoV. The number of filtered modes in RTLS was fixed
to 13, and the PI gains were fixed to g = 0.5. Figures (a) and (b) show the SR
and GEE0.1 contour plots for the 1’ FoV configuration. We can clearly see that the
maximum performance (both in SR and GEE0.1) is obtained at the center of the FoV.
These results are in accordance with the analytical studies of A. Tokovinin [144] who
had predicted already that if the GSs lie too close to each other the performance will
be boosted at the center of the FoV.

Figures (c) and (d) show the SR and GEE0.1 contour plots for the 2’ FoV config-
uration. By comparing the contour plots of the 1’ and the 2’ FoV configurations we
can see that placing the GSs further away from each other improves the homogeneity
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GLAO performance v. PI gains
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Figure 4.31: GLAO performance at 2.2µm as a function of the PI gains (Mv = 9.4, 13
filtered modes, fs = 393.8 Hz, MAPS1+2+3). The performance profiles are evaluated
along the x-axis. (a) SR profiles for the 1’ FoV configuration. (b) GEE0.1 profiles for
the 1’ FoV configuration. (c) SR profiles for the 2’ FoV configuration. (d) GEE0.1

profiles for the 2’ FoV configuration.
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GLAO contour plots
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Figure 4.32: GLAO performance at 2.2µm evaluated in the whole FoV. (Mv = 9.4,
13 filtered modes, g = 0.5, fs = 393.8 Hz, MAPS1+2+3). (a) SR contour plot for
the 1’ FoV configuration. (b) GEE0.1 contour plot for the 1’ FoV configuration. (c)
SR contour plot for the 2’ FoV configuration. (d) GEE0.1 contour plot for the 2’ FoV
configuration.
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of the performance at the expense of a lower mean performance in the whole FoV.

4.3.3 MCAO mode

The MAD system operating in MCAO mode uses the three SH-WFSs for probing the
turbulence and the two deformable mirrors for wavefront correction. We will consider
once again the 1’ and 2’ FoV configurations described in figure 4.28. We have also
considered that all NGSs are of the same magnitude: MV = 9.4.

The MAD’s MCAO interaction matrix (Mint) has 312 rows (104 measurements per
SH-WFS) and 120 columns (60 actuators per DM). The eigenmodes of MAD’s MCAO
interaction matrix for the 1’ FoV and the 2’ FoV configurations are shown in figure 4.34
and figure 4.35, respectively. The associated (normalized) singular values are shown in
figure 4.33. Mode number 1 corresponds to the best-seen eigenmode. Note that each
eigenmode can be represented graphically with two phase maps, one associated with
each DM.

The condition number of the MCAO interaction matrix for the 1’ FoV configuration
is 2770 whereas the one for the 2’ FoV configuration is 1150. Recall from section 2.3.2.2
that the condition number normally increases with the considered FoV. The reason why
for MAD the condition number for the 1’ FoV configuration is larger than the one for
the 2’ FoV configuration is because the altitude DM spans the whole 2’ FoV regardless
of the position of the GSs. Hence, when the GSs are located at 1’ the periphery of the
2’ FoV becomes a non-seen area. The difficulty to reconstruct this portion of the FoV
is translated into a larger condition number for the 1’ FoV configuration.

It is interesting to note also from figures 4.34 and 4.35 that the last eigenmodes
(associated with low sensitivities) are mainly tip-tilt combinations with different orien-
tations (from eigenmode number 91 to 120 for the 1’ FoV configuration, and from 111
to 120 for the 2’ FoV configuration).

4.3.3.1 MCAO performance v. filtered modes

In this section we will study the variations of the MCAO performance with respect
to the number of filtered modes in the TLS reconstruction matrix RTLS . We have
considered the following number of filtered modes: {12, 16, 30, 45, 60}. We will study
both the 1’ FoV and the 2’ FoV configurations. The sampling frequency was set to
400 Hz, and the PI gains were set to gI = gp = 0.3.

Figure 4.36 shows the MCAO performance profiles obtained along the x-axis for the
two FoV configurations, and for all the considered number of filtered modes. The plots
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Figure 4.33: Normalized singular values of the MAD’s MCAO interaction matrix:
(Left) for the 1’ FoV configuration. (Right) for the 2’ FoV configuration.

in (a) and (b) show the profiles of SR and GEE0.1, respectively, for the 1’ FoV configu-
ration. Note the poor performance obtained when only 16 eigenmodes are filtered out.
This is due to the fact that many badly-seen modes (i.e. tip-tilt combinations) have not
been filtered out. As shown in figure 4.34, there are ≈30 badly-seen modes of this type
for the 1’ FoV configuration that should always be filtered out. It is also interesting
to note from the profiles shown in (a) and (b) that increasing the number of filtered
modes improves the homogeneity of the correction in the 1’ FoV. An almost-perfect
homogeneity (SR ≈ 37%) is achieved inside the 1’ FoV after filtering 60 eigenmodes,
at the expense of a slightly lower mean performance in the 1’ FoV.

The plots in (c) and (d) of figure 4.36 show the profiles of SR and GEE0.1, respec-
tively, for the 2’ FoV configuration. Note that the maximum SR and GEE0.1 values
occur at x = +60′′, which coincides with the location of one of the three GSs (see
figure 4.28). It is interesting to note that as the number of filtered modes increases the
performance at x = +60′′ goes down whereas the performance at the other positions
goes up. Hence, the uniformity of the correction in the 2’ FoV is slightly improved for
a larger number of filtered modes.

It is important to note that it is not trivial to decide what is the best number of
filtered modes. In the end, the decision depends on the FoV of interest in which we
want to optimize the performance. As we discussed in section 2.6, there are other
reconstruction approaches more suitable to perform a FoV-dependent optimization.
As we will discuss in section 4.7, more advanced control laws allowing this kind of
optimization will be also validated in MAD in the near future.



194 CHAPTER 4. VALIDATION OF MCAO WITH THE MAD SYSTEM

Figure 4.34: Eigenmodes of the MAD’s MCAO interaction matrix for the 1’ FoV con-
figuration.
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Figure 4.35: Eigenmodes of the MAD’s MCAO interaction matrix for the 2’ FoV con-
figuration.
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MCAO performance v. filtered modes
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Figure 4.36: MCAO performance at 2.2µm as a function of the number of filtered modes
in RTLS (Mv = 9.4, g = 0.3, fs = 393.8 Hz, MAPS1+2+3). The performance profiles
are evaluated along the x-axis. (a) SR profiles for the 1’ FoV configuration. (b) GEE0.1

profiles for the 1’ FoV configuration. (c) SR profiles for the 2’ FoV configuration. (d)
GEE0.1 profiles for the 2’ FoV configuration.
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4.3.3.2 MCAO performance v. PI gains

In this section we will study the variations of the MCAO performance with respect to
the PI gains (gI = gp) of the temporal controller. We will consider the following PI
gains: g = {0.1, 0.2, 0.3, 0.4, 0.5}. The sampling frequency was set to 400 Hz, and the
number of filtered modes in RTLS was set to 45. We have studied once again both the
1’ and the 2’ FoV configurations.

Figure 4.37 shows the MCAO performance profiles obtained along the x-axis for
the two FoV configurations, and for all the considered PI gains. The plots in (a) and
(b) show the profiles of SR and GEE0.1, respectively, for the 1’ FoV configuration.
Note that since we have filtered out 45 eigenmodes, there is a good uniformity of the
correction in the 1’ FoV for all considered PI gains. Note also that the performance
increases with the PI gains. The best performance is obtained when g = 0.5. As
mentioned already in section 4.3.2.3, this is due to the fact that we are considering a
high flux case.

The plots in (c) and (d) of figure 4.37 show the profiles of SR and GEE0.1, re-
spectively, for the 2’ FoV configuration. As mentioned already in section 4.3.2.3, the
maximum SR and GEE0.1 values occur at the position of one of the GSs (x = +60′′).
Note that increasing the gains increases the performance of the whole profiles. How-
ever, the performance at the GS position (x = +60′′) is the most susceptible to PI
gains variations.

4.3.3.3 MCAO contour plots

In this section we will evaluate the MCAO performance at 2.2µm in the whole FoV.
Figure 4.38 shows the MCAO contour plots for the 1’ and the 2’ FoV configurations.
The black stars (F) indicate the positions of the GSs. The performance was evaluated
at the positions indicated with a small cross (+) and then interpolated to generate
the iso-Strehl lines in the whole FoV. The number of filtered modes in RTLS was fixed
to 45, and the PI gains were fixed to g = 0.5. Figures (a) and (b) show the SR and
GEE0.1 contour plots for the 1’ FoV configuration. Note that a very good homogeneity
of the correction is achieved within the 1’ FoV, both in terms of SR and in GEE0.1.
Outside the 1’ FoV the performance drops steadily. Figures (c) and (d) show the SR and
GEE0.1 contour plots for the 2’ FoV configuration. Note that uniformity of correction
is not achieved in the whole 2’ FoV. The maximum performance is obtained at the GSs
positions and then it decreases steadily towards the center of the FoV. The minimum
performance is obtained at the borders of the 2’ FoV between the GSs.
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MCAO performance v. PI gains

(a) (b)

MCAO 1’ FoV (393.8 Hz, MV=9.4)

-60 -40 -20 0 20 40 60
angle (arcsec)

15

20

25

30

35

40

45

S
R

 c
ut

 a
t 2

.2
µm

 (
%

)

gains = 0.1
gains = 0.2
gains = 0.3
gains = 0.4
gains = 0.5

gains = 0.1
gains = 0.2
gains = 0.3
gains = 0.4
gains = 0.5

MCAO 1’ FoV (393.8 Hz, MV=9.4)

-60 -40 -20 0 20 40 60
angle (arcsec)

3

4

5

6

7

8

9

10

G
E

E
0.

1 
at

 2
.2

µm

gains = 0.1
gains = 0.2
gains = 0.3
gains = 0.4
gains = 0.5

gains = 0.1
gains = 0.2
gains = 0.3
gains = 0.4
gains = 0.5

(c) (d)

MCAO 2’ FoV (393.8 Hz, MV=9.4)

-60 -40 -20 0 20 40 60
angle (arcsec)

15

20

25

30

35

40

S
R

 c
ut

 a
t 2

.2
µm

 (
%

)

gains = 0.1
gains = 0.2
gains = 0.3
gains = 0.4
gains = 0.5

gains = 0.1
gains = 0.2
gains = 0.3
gains = 0.4
gains = 0.5

MCAO 2’ FoV (393.8 Hz, MV=9.4)

-60 -40 -20 0 20 40 60
angle (arcsec)

3

4

5

6

7

8

G
E

E
0.

1 
at

 2
.2

µm

gains = 0.1
gains = 0.2
gains = 0.3
gains = 0.4
gains = 0.5

gains = 0.1
gains = 0.2
gains = 0.3
gains = 0.4
gains = 0.5

Figure 4.37: MCAO performance at 2.2µm as a function of the PI gains of the tem-
poral controller (Mv = 9.4, 45 filtered modes, fs = 393.8 Hz, MAPS1+2+3). The
performance profiles are evaluated along the x-axis. (a) SR profiles for the 1’ FoV
configuration. (b) GEE0.1 profiles for the 1’ FoV configuration. (c) SR profiles for the
2’ FoV configuration. (d) GEE0.1 profiles for the 2’ FoV configuration.
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Figure 4.38: MCAO performance at 2.2µm evaluated in the whole FoV. (Mv = 9.4,
45 filtered modes, g = 0.5, fs = 393.8 Hz, MAPS1+2+3). (a) SR contour plot for
the 1’ FoV configuration. (b) GEE0.1 contour plot for the 1’ FoV configuration. (c)
SR contour plot for the 2’ FoV configuration. (d) GEE0.1 contour plot for the 2’ FoV
configuration.
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Figure 4.39: Slope map representing the response of MAD’s SH#2 to an unit command
vector applied to actuator#8 of the ground DM. The information was extracted from
the 8th column of: (a) experimental IM, (b) synthetic IM (1st iteration). (c) The
difference between the 8th columns of both IMs is a measure of the mismatch between
them. The large mismatch is due to a relative rotation between real and simulated
SH-WFS of ≈ 90 degrees.

4.4 Opto-geometrical calibration

For all the MAD simulation studies presented in section 4.3 we considered that all
SH-WFSs were physically oriented in the same way (as shown in figure 4.2), and that
both DMs were also perfectly aligned and oriented as depicted in figure 4.7. In this
section we will present the procedure we followed to determine the true opto-geometrical
relationships between the MAD components.

The opto-geometrical calibration refers to the determination of the relative positions
(i.e. rotation, shift in x, and shift in y) between both DMs and the three SH-WFS of
MAD, as well as the determination of the GSs mapping in the FoV.

The procedure we have used to estimate the relative positions is based on an iterative
comparison between an experimental IM calibrated in the laboratory and a synthetic
IM generated with our MAD simulation tool. Indeed, as illustrated with an example
in figure 4.39, the interaction matrix contains all the information about the relative
positions between the wavefront sensors and the deformable mirrors. Therefore, it is
possible to retrieve this information by an iterative comparison in which the rotations
and shifts of the simulated components are adjusted until a best fit between the two
matrices is found.

As illustrated in figure 4.39(c), the difference between an experimental and a syn-
thetic IM is a measure of the misalignments between the real components and the
simulated ones. The best fit in the least-squares sense between the two IMs can be ob-



4.4. OPTO-GEOMETRICAL CALIBRATION 201

tained by minimizing the mean-square error between all the elements of the IMs. This
is equivalent to minimizing the squared distance between the two matrices, defined as:

d2 = ‖Mexp −Msyn‖2

= trace
{
(Mexp −Msyn)T (Mexp −Msyn)

}
(4.33)

where Mexp denotes the experimental IM and Msyn the synthetic one. Of course,
before attempting to compare the two matrices, it is important to be sure that one
follows the same convention in the numbering of actuators and subapertures in both
IMs. Figure 4.7 shows the sequential numbering of the actuators for the MAD’s DMs,
and figure 4.2 shows the sequential numbering of the subapertures for all SH-WFSs.
Also, a convention in the ordering of the SH slopes needs to be defined. We will order
first the x-slopes followed by the y-slopes for all subapertures.

We will outline below the steps that need to be followed in order to estimate the
relative positions between the different DMs and the different WFSs of an MCAO
system like MAD [111]:

1. Alignment of SH-WFSs with respect to ground DM. An experimental (SCAO) IM
between the ground DM and a SH-WFS is calibrated. On the simulation side, the
position of the (simulated) ground DM is set to a given reference position (e.g.
zero rotation, zero shifts), and the relative position (i.e. rotation, shift in x, shift
in y) of the (simulated) SH-WFS is iteratively adjusted until a best fit between
Mexp and Msyn is found. This procedure is repeated for all SH-WFS.

2. Alignment of altitude DM with respect to all SH-WFS. Recall that in MCAO,
the interaction matrix involving a DM conjugated in altitude depends on the
position of the GSs in the FoV. In order to avoid the FoV-dependence as a first
step, all SH-WFSs should be coupled to a GS located in the optical axis. Then, an
experimental IM between the altitude DM and each of the SH-WFS is calibrated.
On the simulation side, the absolute position of each (simulated) SH-WFS is set
to the values determined in step 1. Then, the relative position of the altitude DM
is iteratively adjusted until a best fit between the experimental and the synthetic
IM is found. This procedure is repeated for all SH-WFSs, but note that all the
results should be the same (i.e. there is only one physical position of the altitude
DM). Discrepancies in the results are an indicator of the precision of the method.
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SH1 v. DM1
Rotation 0 degrees
Shift in x +0.0187 %
Shift in y -0.0025 %

SH2 v. DM1
Rotation 90 degrees
Shift in x -0.001 %
Shift in y +0.023 %

SH3 v. DM1
Rotation 0 degrees
Shift in x +0.022 %
Shift in y -0.004 %

SH1 v. DM2
Rotation -10.81 degrees
Shift in x +0.563 %
Shift in y +0.390 %

SH2 v. DM2
Rotation -9.00 degrees
Shift in x +0.071 %
Shift in y +0.727 %

SH3 v. DM2
Rotation -10.3 degrees
Shift in x -0.708 %
Shift in y +1.121 %

Table 4.6: Summary of the relative positions between components of the MAD system.
The rotations are given in degrees clockwise, and the shifts are given in percent of the
telescope pupil size. (Left) The three tables on the left show the relative positions
of each SH with respect to the ground DM (DM1) determined from the first step of
our procedure. (Right) The three tables on the right show the relative position of the
altitude DM (DM2) with respect to each of the SHs determined from the second step of
our procedure. Discrepancies in these numbers indicate the precision of our algorithm.

3. Mapping of the GSs in the FoV. The last step is to determine the mapping between
the real FoV and the simulated FoV in order to position correctly the GSs in the
creation of MCAO interaction matrices. On the experimental side, a full MCAO
IM is recorded with the selected GSs. On the simulation side, all the (simulated)
DMs and SH-WFSs are set to the positions determined in the previous steps.
Then, the positions in the FoV of the (simulated) GSs are adjusted until a best
fit between the MCAO IMs is found.

The summary of the relative positions between components of the MAD system is
presented in table 4.6. From the discrepancies in the determination of the position
of the altitude DM we can conclude that the precision of our algorithm is ≈ ±1◦

in rotation and ≈ ±1% in the shifts. It is important to note that the precision of
our algorithm depends on the interpolation algorithms that were used to simulate the
rotations and the shifts of the AO components. We believe that there is room for
improvement because the interpolation algorithms that we used are not well adapted
for circular geometries, and they introduce non-negligible interpolation errors at the
borders of the circular pupil.
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Regarding the mapping of the GSs in the FoV (step number 3), we determined the
distribution of all the GSs generated by MAPS as seen from the WFSs plane. Note
that in figure 4.15 we showed the distribution of the GSs as seen from the CAMCAO
camera. The difference between the two distribution is just a reflection across the
y-axis.

4.5 Experimental v. simulation results

In this section we will present the experimental results obtained in SCAO, GLAO
and MCAO configurations and their direct comparison with simulation results. In the
case of GLAO and MCAO, two FoV configurations were studied: 1’ FoV and 2’ FoV.
The GSs for the 1’ FoV configuration were the MAPS stars number 26, 28 and 30
(Figure 4.15), and for the 2’ FoV were the MAPS stars number 5, 10 and 15. Note
that the actual FoV covered by the MAPS stars is slightly smaller than 1’ and 2’,
namely 54” and 108” respectively. The equivalent star magnitude of all GSs was set
to MV = 9.4. The turbulence conditions are the ones corresponding to the MAPS
PS1+2+3 configuration (Table 4.5).

We will present a comparison in performance obtained with a TLS reconstructor
RTLS and a PI controller. The sampling frequency was set to 393.8 Hz. The gains
of the PI controller were set to the same value (gI = gp). For each configuration,
the experimental and simulation control law parameters (i.e. the number of truncated
modes in RTLS and the gains gI = gp of the PI controller) were tuned independently in
order to maximize the performance on each case. The selected control law parameters
are summarized in table 4.7.

Note that in general, the number of truncated modes that maximizes the perfor-
mance in the experiments is larger than the number of truncated modes that maximizes
the performance in simulations. Also, the gains that maximize the performance in the
experiments are in general much smaller than the ones that maximize the performance
in simulations. In general, more truncated modes and lower gains are required when op-
erating at lower flux levels, but we have verified that experiments and simulations were
run under similar flux conditions (i.e. MV = 9.4). The reasons behind the difference
between these control law parameters remain to be understood.

In addition, we should note that when operating the MAD system at 393.8 Hz and
increasing the PI gains beyond 0.25 causes the MAD system to go unstable. According
to control theory (see section 4.2.3.2), the relative stability of an AO system with a
total of two frames delay (τtot = 2T ) is assured if the integral gain is 0 < gI ≤ 0.5. The
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SCAO GLAO MCAO
1’ FoV 2’ FoV 1’ FoV 2’ FoV

Exp Sim Exp Sim Exp Sim Exp Sim Exp Sim
truncated modes 20 8 15 13 20 13 55 50 45 45

gains 0.25 0.50 0.20 0.40 0.15 0.40 0.25 0.40 0.15 0.40

Table 4.7: Summary of the control law parameters selected for the comparison of
experimental and simulation results.

reasons why the MAD system has a lower stability regime at 393.8 Hz also remains to
be understood.

The performance obtained with each configuration in the FoV will be evaluated
at all MAPS stars positions (Figure 4.15) at λ = 2.2µm in terms of Strehl ratio and
gain in ensquared energy in a square of .1”x.1” (GEE0.1). For reference purposes,
the ensquared energy in a square of .1”x.1” of the turbulence long-exposure PSF is
EEtur

0.1 ≈ 4% (MAPS PS1+2+3 profile). On the other hand, the ensquared energy in
a square of .1”x.1” of the diffraction-limited PSF is 70%. Also, the SR without AO
correction (i.e. a long exposure on the turbulence) is ≈ 2%.

The estimation of the SR and the GEE0.1 from experimental data is not straightfor-
ward. Before presenting the comparison of experimental and simulation results, we will
discuss in sections 4.5.1 and 4.5.2 how these metrics were computed from an analysis
of the images obtained with the CAMCAO infrared camera.

4.5.1 Experimental Strehl ratio computation

In order to estimate meaningful and comparable experimental Strehl ratio values from
the infrared-camera images it is required to take into account a handful of practical
considerations. The main issues affecting the SR computation that had to be dealt
with when working in the laboratory with MAD were:

1. Non-common path aberrations. The non-common path aberrations (NCPA) for
the MAD system were characterized using the phase diversity technique for several
positions in the FoV [75]. The NCPA at the center of the FoV of MAD are in
general smaller than the NCPA at other positions in the 2’ FoV. On average, the
MAD’s NCPA in the FoV account for a wavefront error of ≈100 nm rms, which
corresponds to a maximum SR of ≈75% at 2.2µm [75].

In principle, as discussed in section 1.2.4.2, the NCPA can be compensated in
real-time by closing the control loop on the reference slope vector sref . However,
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this technique implies that it is possible to accurately transform the DM shape
that compensates for the NCPA into a reference slope vector. In the case of MAD
operating in SCAO mode with the SH-WFS located at the center of the FoV, the
NCPA are not big enough (due to the better optical quality at the center of the
FoV) to produce a big response on the SH-WFS. As a result, the reference slopes
are always very close to the zero vector (sref ≈ ~0), and the performance obtained
with and without the reference slope vector technique is essentially the same.
Note that if the MAD’s SH-WFSs had better sampling characteristics5 it would
have been possible to record the reference slope vector with a better accuracy. In
that case, it might have been possible to compensate in real-time for the NCPA
at the center of the FoV with the reference slope vector technique.

For the case of MAD operating in GLAO and MCAO modes, since the SH-WFSs
are located away from the FoV center (i.e. in a circle of ≈1’ or ≈2’ FoV) the
NCPA at these positions in the FoV are actually larger, and it is then possible
to record reference slope vectors that actually allow to (partially) compensate in
real-time for the NCPA in the directions of the GSs.

In any case, for all the experiments presented in this section we have decided to
not correct in real-time for the NCPA using the reference slope vector technique.
Hence, all reference slope vectors were simply set to sref = ~0. Nevertheless,
the experimental SR values were a-posteriori normalized using the procedure
described in section 4.5.1.1 in order to take into account the loss in SR introduced
by the NCPA in the FoV.

2. Field-curvature effect. The curvature of the IR focal plane of MAD was char-
acterized [76]. It is ≈ 1 mm @ F/15 between the center and the border of the
2’ FoV. Clearly, when taking 1’x1’ images with CAMCAO there will be at most
only one star in focus. The images of the other stars in the FoV will be affected
by a defocus. The equivalent loss in SR between an in-focus star in the center of
the FoV and one in the border is ≈ 13% [76].

For all the experiments that will be presented below the best focus was set to the
center of the FoV (MAPS star #34). Hence, the SR values for all the other stars
were affected by the field-curvature effect. Nevertheless, the SR normalization
procedure presented in section 4.5.1.1 also helped to take into account the loss in
SR induced by the field curvature.

5Recall that the MAD’s SH-WFSs sample at Shannon over 4 the diffraction-limited spots (sec-
tion 4.2.1.1).
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4.5.1.1 Strehl ratio normalization

As discussed above, the experimental SR values in the 2’ FoV were affected by FoV-
dependent non-common path aberrations and by the characteristic curvature of the
IR focal plane. Nevertheless, it was possible to characterize the SR loss induced by all
these effects by measuring the maximum SR obtained at each MAPS star position in the
absence of atmospheric turbulence (i.e. installing blank phase screens on MAPS). The
maximum SR values were measured in closed-loop for each of the configurations that
will be presented below. Then, the SR values obtained with atmospheric turbulence
were later normalized by the corresponding maximum SR values.

The only source of error that is not taken into account with this normalization
procedure is the error caused by the MAPS phase screens chromaticity. Indeed, the
atmospheric turbulence emulated by MAPS is not totally achromatic. Hence, the
wavefront perturbation seen by the WFSs will be slightly different from the one seen
by the infrared camera. This effect will introduce a systematic error during closed-loop
operation. The equivalent loss in SR due to this effect was also characterized and it is
4.5% [91]. Therefore, the experimental SR values have to be also normalized by 95.5%,
and this was done for all the experimental results that will be presented below.

4.5.1.2 Strehl ratio estimation

The SR of an image can be estimated either by using equation 1.68 or equation 1.69.
We have estimated the SR using a method based on equation 1.68. It is important to
note that the main issues that have to be taken care of with this algorithm are the
correct estimation of the center of the image (i.e. the vector ~0 in equation 1.68), and
the generation of a diffraction-limited PSF that matches the spatial sampling of the
camera (i.e. the denominator of equation 1.68).

E. Marchetti developed a Strehlometer routine based on this method that takes
into account all CAMCAO specificities (e.g. pixel scale, background level, etc.). All
experimental SR values that will be presented below were computed with this routine.

4.5.2 Experimental gain in ensquared energy computation

We are interested in evaluating the gain in ensquared energy in a square of .1”x.1”
(GEE0.1). This size of square is becoming a standard for evaluating the performance
of next-generation GLAO systems operating in the IR (section 1.2.9).

The computation of the GEE in a square of fixed size is not straightforward. Recall
that the pixel scale of CAMCAO is equal to 0.028”. If the star images were centered
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SR max (%) GEE0.1 max
Experimental 34 11
Simulation 46 7.5
Relative error (%) 26 -46

Table 4.8: SCAO configuration: comparison of the maximum performance (SR and
GEE0.1) obtained from experiments and simulations.

between 4 pixels, we could compute accurately the EE in a square of size 0.056” or
0.112”, and for a square of exactly 0.1”x0.1” we would need to interpolate the EE
between these two values. This is actually the way we have proceeded in the computa-
tion of the GEE from simulations. However, in experimental data, the image is never
centered on four pixels so it is more difficult to define a square of exactly 0.1”x0.1”
that is also centered on the image. Interpolation methods could have been also used
on experimental data, but the presence of the imaging detector noise (not taken into
account in the simulation) makes the interpolation less accurate. We have decided then
to avoid interpolations and simply integrate the PSFs in 2x2 camera pixels (if the im-
age is relatively centered on four pixels) or 3x3 camera pixels (if the image is relatively
centered on a single pixel). Therefore, the GEE will be effectively evaluated in a square
of size between 0.056” to 0.084” depending on the actual position of the star image.
Unfortunately, the comparison with simulation results is not going to be direct. We
will actually expect higher values in GEE for experimental data since in general the
size of the square will be smaller.

4.5.3 SCAO mode

In this section we will compare experimental and simulation results obtained in SCAO
mode. The GS was located at the center of the FoV (MAPS star # 34). Figures 4.40(a)
and (b) show the SR contour plots obtained from experiments and simulations, and
(c) and (d) show the corresponding GEE0.1 contour plots. The maximum performance
values (on the GS position) obtained in SCAO mode are summarized in table 4.8.

Table 4.8 also presents the relative error, which was computed with respect to the
simulation results as:

Relative error =
PERFsim − PERFexp

PERFsim
× 100 . (4.34)

Note that the relative error in SR is 26%. This error is an indicator of how much
the experimental maximum SR is below the expected maximum SR predicted by the
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Figure 4.40: SCAO configuration: (a) SR from experiments. (b) SR from simulations.
(c) GEE0.1 from experiments. (d) GEE0.1 from simulations. The GS is located at the
center of the FoV. MAPS stars indicated with a (+).
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simulations. Note that the mismatch is most probably due to additional error sources
not taken into account in neither the simulations nor the normalization of the exper-
imental SR values. So far we have not identified additional error sources that could
be responsible for such a mismatch. The reasons behind the mismatch remain to be
investigated.

Concerning the GEE0.1, note from table 4.8 that the relative error is -46%, the
negative sign meaning that the performance obtained from experiments is higher than
the one obtained from simulations. As we explained in section 4.5.2, the main reason
why the GEE0.1 estimated from experiments is higher than the one estimated from
simulations is because the square size used in the experimental estimation of GEE0.1 is
actually smaller than 0.1”x0.1”. Therefore, we won’t be able to compare directly the
absolute values in GEE0.1. The experimental estimation method of GEE0.1 needs to
be improved, and this work remains to be done.

Let us now compare the performance in the whole FoV obtained with the SCAO
configuration. Note from figures 4.40(a) and (b) that, as expected, the SCAO correc-
tion gets worse as we move away from the GS due to anisoplanatism. A comparison
between the SCAO profiles obtained from experiments and simulations was already
presented in figure 4.22 from which we estimated the isoplanatic angle θ0. Note also
from figures 4.40(c) and (d) that, similarly to the Strehl, the GEE0.1 also gets worse as
we move away from the GS due to anisoplanatism.

4.5.4 GLAO mode

In this section we will compare experimental and simulation results obtained in GLAO
mode. Figure 4.41 shows the comparison for the 1’ FoV configuration, and figure 4.42
shows the comparison for the 2’ FoV configuration. The summary of the performance
statistics is presented in table 4.9.

Let us first compare the results obtained in the 1’ FoV configuration. As seen from
figure 4.41, the GLAO performance (both in SR and GEE0.1) reaches a maximum at the
center of the FoV in both experimental and simulation results. As we mentioned already
in section 4.3.2.4, this behavior is also in accordance with the analytical predictions of
A. Tokovinin [144]. Note from table 4.9 that the simulations once again predict higher
Strehls (min, max, mean) than the ones obtained experimentally.

The difference in SR (SRsim−SRexp) across the whole FoV is shown in figure 4.41(c).
Note that there is a portion of the FoV over which the SR predicted from simulations
is actually smaller than the one obtained from experiments. However, we can clearly
see from figure 4.41(b) that this result is related to the anisotropic shape (i.e. slightly
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Figure 4.41: GLAO 1’ FoV configuration: (a) SR from experiments. (b) SR from
simulations. (c) SR difference (SRsim − SRexp). (d) GEE0.1 from experiments. (e)
GEE0.1 from simulations. GSs indicated with a F. MAPS stars indicated with a +.
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Figure 4.42: GLAO 2’ FoV configuration: (a) SR from experiments. (b) SR from
simulations. (c) SR difference (SRsim − SRexp). (d) GEE0.1 from experiments. (e)
GEE0.1 from simulations. GSs indicated with a F. MAPS stars indicated with a +.
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1’ FoV
Strehl ratio (%) GEE0.1

min max mean std min max mean std
Experimental 15.7 30.4 20.5 4.8 4.8 9.2 6.6 1.2
Simulation 16.6 36.9 23.1 6.7 3.9 7.0 5.1 0.96
Rel. error (%) 5.9 17.8 11.3 – -20.9 -30.4 -29.5 –

2’ FoV
Strehl ratio (%) GEE0.1

min max mean std min max mean std
Experimental 2.6 8.2 5.7 1.6 1.86 4.3 3.0 0.68
Simulation 4.4 12.0 8.5 1.9 2.1 3.5 2.8 0.38
Rel. error (%) 40.9 32.1 33.1 – 10.2 -22.4 -7.4 –

Table 4.9: GLAO configuration: statistics of the performance (SR and GEE0.1) ob-
tained from experiments and simulations. The statistics for the 1’ FoV configuration
were computed using only MAPS stars 25 to 34. The relative error for each statistical
parameter Y = {min, max, mean} was computed as: (Ysim − Yexp)/Ysim.

elongated along the y-axis) of the SR contour predicted from simulations.

Let us now discuss the results obtained in the 2’ FoV configuration. From figure 4.41,
it can be seen that GLAO provides a quite uniform performance (both in SR and
GEE0.1) across the whole FoV, but also it should be noted that the performance is
rather low. For a quantitative analysis, take a look at the standard deviation values
(characterizing the uniformity of the correction) and the mean performance values
reported in table 4.9.

Regarding the comparison between simulation and experimental results, figure 4.42(c)
shows the SR difference (SRsim−SRexp) across the whole FoV. Note that the absolute
error is of only ≈3% in SR across the FoV, but the relative errors (reported in table 4.9)
are rather large.

4.5.5 MCAO mode

In this section we will compare experimental and simulation results obtained in MCAO
mode. Figure 4.43 shows the comparison for the 1’ FoV configuration, and figure 4.44
shows the comparison for the 2’ FoV configuration. The summary of the performance
statistics is presented in table 4.10.

Regarding the 1’ FoV configuration, as can be seen from figure 4.43, both simula-
tion and experimental results show that the MCAO performance (SR and GEE0.1) is
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Figure 4.43: MCAO 1’ FoV configuration: (a) SR from experiments. (b) SR from
simulations. (c) SR difference (SRsim − SRexp). (d) GEE0.1 from experiments. (e)
GEE0.1 from simulations. GSs indicated with a F. MAPS stars indicated with a +.



214 CHAPTER 4. VALIDATION OF MCAO WITH THE MAD SYSTEM

(a) (b)

-60 -40 -20 0 20 40 60
X (arcsec)

-60

-40

-20

0

20

40

60

Y
 (

ar
cs

ec
)

Experimental: SR MCAO 2’ FoV

14

16 16
18

18

18

20

20

20

22

22

22

22

24

24

24

24

26

-60 -40 -20 0 20 40 60
X (arcsec)

-60

-40

-20

0

20

40

60

Y
 (

ar
cs

ec
)

Simulation: SR MCAO 2’ FoV

24

24

26

26

26

26

28

28
28

28

30

30

30

32

32

32

34

34

34

36

36

36

38

38

38

0

7

14

21

28

35

42

S
R

(%
)

(c)

-60 -40 -20 0 20 40 60
X (arcsec)

-60

-40

-20

0

20

40

60

Y
 (

ar
cs

ec
)

Difference: SR MCAO 2’ FoV

1

3
5

5

7

7

7
9

9

9
9

11

11

11

13

13

13

15

15

15

-20

-13

-6

0

6

13

20

S
R

 d
iff

er
en

ce
 (

%
)

(d) (e)

-60 -40 -20 0 20 40 60
X (arcsec)

-60

-40

-20

0

20

40

60

Y
 (

ar
cs

ec
)

Experimental: GEE0.1 MCAO 2’ FoV

4
5

5

6

6
6

6

6

7

7

7

7

7
8

-60 -40 -20 0 20 40 60
X (arcsec)

-60

-40

-20

0

20

40

60

Y
 (

ar
cs

ec
)

Simulation: GEE0.1 MCAO 2’ FoV

5 5

5

5

6

6

6

7

7

7

0

2

4

6

8

10

12

G
E

E
0.

1

Figure 4.44: MCAO 2’ FoV: (a) SR from experiments. (b) SR from simulations. (c) SR
difference (SRsim−SRexp). (d) GEE0.1 from experiments. (e) GEE0.1 from simulations.
GSs indicated with a F. MAPS stars indicated with a +.
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1’ FoV
Strehl ratio (%) GEE0.1

min max mean std min max mean std
Experimental 26.2 35.0 30.7 2.8 7.18 10.4 9.2 0.90
Simulation 38.1 41.7 40.1 1.2 6.3 7.7 7.2 0.46
Rel. error (%) 31.2 15.9 23.5 – -14.1 -34.6 -26.6 –

2’ FoV
Strehl ratio (%) GEE0.1

min max mean std min max mean std
Experimental 14.6 27.3 21.2 3.7 3.4 8.2 6.4 1.3
Simulation 23.2 42.2 30.4 5.3 4.4 7.5 5.6 0.88
Rel. error (%) 37.3 35.4 30.1 – 23.3 -9.2 -13.0 –

Table 4.10: MCAO configuration: statistics of the performance (SR and GEE0.1) ob-
tained from experiments and simulations. The statistics for the 1’ FoV configuration
were computed using only MAPS stars 25 to 34. The relative error for each statistical
parameter Y = {min, max,mean} was computed as: (Ysim − Yexp)/Ysim.

quite uniform within the whole 1’ FoV (see the standard deviation values reported in
table 4.10). However, simulations once again predict a much higher performance in the
whole 1’ FoV (see the mean values in table 4.10). An absolute error of ≈ 9% in SR
–see figure 4.43(c)– which translates into a relative error of ≈ 23%.

Concerning the 2’ FoV configuration, note from figures 4.44(a,b,c) that there is
a major difference between experimental and simulation SR results. As was already
mentioned in section 4.3.3.3, simulations predict peak Strehl ratios on the GSs dropping
off towards the center of the FoV. However, this behavior is not witnessed on the
experimental contour plot. In consequence, the uniformity of the correction in the
whole 2’ FoV obtained from experiments is actually better than the one predicted by
simulations (see the standard deviation values in table 4.10).

4.5.6 SCAO, GLAO, MCAO comparison

Let us now compare the performance obtained with the different configurations: SCAO,
GLAO, and MCAO. For this purpose let us define a figure of merit that will be com-
puted using the performance statistics presented above for each of the configurations.
The figure of merit (FoM) we propose is defined as:

FoM(FoV)
4
=

mean(FoV)
std(FoV)

, (4.35)
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Figure 4.45: Figure of merit (FoM) computed for all configurations (SCAO, GLAO,
MCAO) from simulation and experimental results. (a) SR in 1’ FoV. (b) SR in 2’ FoV.
(c) GEE0.1 in 1’ FoV. (d) GEE0.1 in 2’ FoV.

where the numerator and the denominator of FoM are, respectively, the mean and the
standard deviation of the performance (SR or GEE0.1) over the considered FoV (1’ or
2’). Note that the FoM is a dimensionless parameter that will be large if the average
performance is high and the uniformity of the correction is good over the considered
FoV. The figures of merit for all the considered configurations computed from simulation
and experimental results are illustrated in figure 4.45.

Note that the FoM of the SCAO mode is always the smallest in all cases simply
because the uniformity of the correction is very poor due to the anisoplanatism. Re-
garding the comparison in the 1’ FoV configuration —figures 4.45(a) and (c)—, note
that the FoM (in SR and GEE0.1) of the MCAO mode is greater than the FoM of the
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GLAO mode. This is basically due to the fact that MCAO provides a higher mean
performance (in SR and GEE0.1) and a better uniformity than the GLAO mode (see
the contour plots in figures 4.41 and 4.43).

Note also from figures 4.45(a) and (c) that the FoMs computed from simulation and
experimental results are comparable except for the MCAO mode, for which the FoM
obtained from simulations by far dominates the landscape. This may indicate that the
simulation results in this mode of operation are too optimistic. The reasons behind
this apparent overestimation of performance in MCAO remain to be investigated in
detail. However, it may be related not to the way we simulate an MCAO system,
but to the way we calibrate it in our simulation tool. Indeed, in practice there are
always calibration errors (i.e. imperfect centering of the SH-WFSs on the GSs, non-zero
measurement noise during the interaction matrix calibration, etc.) that may also affect
the ultimate performance. Hence, future work should focus on the accurate modelling
of the calibration process in order to evaluate the impact of calibration errors on the
ultimate performance of an MCAO system.

Let us now resume our comparison of the FoMs, this time for the case of the 2’ FoV
configuration. Regarding the Strehl ratio —figure 4.45(b)—, we can see once again that
the FoM for the MCAO mode is greater than the FoM for the GLAO mode. However,
note that, as opposed to the 1’ FoV case, the FoM for the MCAO mode computed from
simulation results is not dramatically greater than the one for the GLAO mode. This
is basically due to the poorer uniformity of the MCAO correction in the whole 2’ FoV
(see figure 4.44(b)) which causes its FoM to go down.

Regarding the GEE0.1 — figure 4.45(d)—, we can see an interesting swap in the
trends obtained from simulation results: GLAO has a larger FoM than MCAO. This
is mainly due to the fact that the mean performance evaluated in terms of GEE0.1

provided by GLAO and MCAO becomes comparable, but GLAO provides a better
uniformity. However, this swap does not occur in the case of experimental results:
MCAO still has the largest FoM due to the good uniformity obtained from experimental
results. The experimental results presented in this section have been also presented in
a conference paper [93].

4.6 Experiment with a synthetic reconstructor

In this section we will present an experiment we conducted with a synthetic reconstruc-
tor. That is, a reconstruction matrix computed by inverting a synthetic interaction
matrix generated with our MAD simulation tool. Let us discuss first what is the mo-
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tivation behind this kind of test. The results of our experiment will be presented in
section 4.6.1.

In general, for current AO systems, the interaction matrix (IM) is calibrated ex-
perimentally. The experimental calibration has the advantage that all particularities
of the AO system (some of them not easy to model) are taken into account, e.g. op-
tical aberrations, misalignments, etc. For current AO systems, the calibration of the
IM is done with the help of a bright artificial source placed at the input focus of the
AO system. However, for the next generation of adaptive telescopes comprising large
secondary deformable mirrors [4], this procedure won’t be possible because the input
focus won’t be accessible to place an artificial calibrating source. A handful of new
techniques based on the on-sky calibration of the IM are currently under study for
these kind of telescopes, and described in [101]. Alternatively, the generation of a syn-
thetic IM seems also an interesting approach. The success of this approach relies on
the accuracy of the system component models as well as the accurate modelling of the
opto-geometrical relationships between them.

As presented throughout this chapter, we have fine-tuned our MAD simulation tool
to take into account most of the real system characteristics. In the following section
we will present the results of an experiment using an MCAO synthetic reconstructor
generated with our MAD simulation tool.

4.6.1 Comparison in performance

We will present a comparison of the performance (SR) obtained when closing the loop
in MCAO mode with a TLS reconstructor computed by inverting an experimental and a
synthetic IM. The selected GSs were the MAPS stars number 5, 10, and 15 (FoV=108”)
shown in figure 4.15.

Let us first compare the synthetic and the experimental IMs. Figure 4.46(a) shows
the experimental IM and figure 4.46(b) shows the first iteration of the synthetic IM
(i.e. all shifts and rotation angles equal to zero). In order to visualize the importance
of a correct opto-geometrical calibration (section 4.4), figure 4.46(c) compares a single
row (row number 111) of the experimental and the synthetic IMs (first iteration IM
and best-fit IM). The row number 111 corresponds to the x-slope of subaperture #7
of SH2. Note that there is an important difference between the 1st iteration IM and
the best-fit IM. Also, note that there is a good matching existing between the best-fit
synthetic IM and the experimental IM.

We then generated a synthetic TLS reconstructor from the best-fit synthetic IM, and
a experimental TLS reconstructor from the experimental IM. A total of 45 eigenmodes
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Figure 4.46: Comparison of experimental and synthetic MCAO interaction matrices.
(a) Experimental MCAO IM. (b) Synthetic MCAO IM (1st iteration). (c) Comparison
of a single row (row number 111 corresponding to the x-slope of subaperture #7 of
SH2) of the experimental and the synthetic (1st iteration and best-fit) IMs.



220 CHAPTER 4. VALIDATION OF MCAO WITH THE MAD SYSTEM

SR (%)
min max mean std

Experimental TLS reconstructor 11.5 24.6 19.8 3.0
Synthetic TLS reconstructor 9.9 22.6 18.0 2.8
Relative error (%) 13.9 8.1 9.1 –

Table 4.11: Summary of the performance statistics obtained with a synthetic and a
experimental MCAO reconstructor. The relative error for each statistical parameter
Y = {min,max, mean} was computed as: (Ysim − Yexp)/Ysim.

were filtered out in both TLS reconstructors. The MAD system was operated at 400 Hz,
and the PI gains of the temporal controller were set to gI = gp = 0.22. The turbulence
conditions used in these experiments are summarized in table 4.5. The comparison in
performance in terms of SR at 2.2 µm in the whole 2’ FoV obtained with these two
reconstructors is presented in figure 4.47. The performance statistics are summarized
in table 4.11. From these results we can see that the synthetic TLS reconstructor gives
a lower performance in the whole FoV. Note from figure 4.47(c) that the absolute error
is ≈ 2% in SR which corresponds to a relative error of ≈ 9% in the mean performance.

We believe that the presence of FoV-dependent static aberrations in the MAD bench
—which have not been taken into account in the creation of the synthetic IM— is one
of the main issues responsible for the difference in performance. On the other hand,
we also believe that it may be possible to improve the performance obtained with the
synthetic reconstructor by improving the AO components models. For instance, the
models of both the DMs and the SH-WFSs of MAD could be improved as follows:

- High-resolution influence functions. As discussed in section 4.2.2.1, the IFs of
the DMs were characterized with a HASO camera. The measured IFs have been
sampled in a 64x64 pixels grid, but the required sizes for the ground and altitude
DM metapupils are 128x128 and 210x210 respectively. There is clearly an inter-
polation/extrapolation error in the re-sampling process that could be avoided by
measuring the IFs with a higher spatial resolution; for instance, with the use of
an interferometer.

- Pixel scale non-uniformity. As presented in section 4.2.1, we have assumed that
the pixel scale for the SH-WFSs of MAD is equal to 0.3”. However, variations
in the distance between the lenslet array and the CCD leads to a pixel scale
non-uniformity across the subapertures. The non-uniformity is mainly caused by
a tilt of the lenslet array with respect to the CCD plane, but small pixel scale
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Figure 4.47: SR in K band and in the 108” FoV obtained with: (a) an MCAO syn-
thetic TLS reconstructor, and (b) an MCAO experimental TLS reconstructor. (c) SR
difference between experimental and synthetic approches.
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Figure 4.48: Experimental characterization of the pixel scale non-uniformity for one of
the MAD’s SH-WFSs. The values are given in arcsec/pixel.

variations can also be due to the optical aberrations of the lenslet array. Figure
4.48 shows the pixel scale non-uniformity for one the MAD’s SH-WFSs [133]. The
modelling of the SH-WFSs could also be improved by taking into account this
effect.

In conclusion, it is not trivial to create synthetic reconstructors that perform as
good as the experimental ones. We believe that there is room for improvement in
the creation of synthetic IMs and we have identified some possible refinements of the
AO components models that may help to reduce the gap in performance between the
experimental and the synthetic approaches. Due to time limitations, we could not
pursue the refinement of the AO components models within the frame of this work.

4.7 Perspectives on advanced control laws

The control law that was implemented in MAD consisted of a TLS reconstruction
matrix, RTLS , coupled with a PI temporal controller. We have validated experimentally
the concepts of GLAO and MCAO in closed loop using this control law. Clearly, the
next step is to study the advantages of more advanced control laws involving statistical
prior knowledge required to improve the performance in a specified field of view. In
the time frame of this PhD work, we could not pursue such a study. Nevertheless, we
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Figure 4.49: Simplified control time diagram for an adaptive optics system with a total
of two-frames time delay.

will present in this section an overview of some advanced control laws that could be
validated in the MAD system in the near future.

4.7.1 MMSE reconstructor + temporal controller

The statistical estimation methods for the problem of wavefront reconstruction in
MCAO were introduced in section 2.5. As we discussed in that section, the mini-
mum mean-square-error reconstructor, RMMSE , provides the optimal solution to the
problem of wavefront reconstruction in MCAO in the sense that it ensures that the
mean-square error —or residual variance— on each estimated turbulence layer is min-
imal. An ad-hoc control law can be formed by cascading an MMSE reconstructor with
a temporal controller, as shown in figure 4.50(a). For instance, when the temporal
controller is a simple integrator with gain gI , the equations for this ad-hoc control law
can be expressed as:

∆u(n) = RMMSEs(n) (4.36)

u(n) = u(n− 1) + gI∆u(n) , (4.37)

where s(n) and u(n) are the WFSs measurement vector and the command vector at time
n respectively (see the time diagram in figure 4.49). The two (equivalent) expressions
for the MMSE reconstructor were presented in equation 2.80, in the context of the
wavefront reconstruction problem in MCAO. In this context, these expressions can be
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rewritten as:

RMMSE,1 =
[
MT

intC
−1
w Mint + α1Cu

−1
]−1

MT
intC

−1
w , (4.38)

RMMSE,2 = CuMT
int

[
MintCuMT

int + α2Cw

]−1
, (4.39)

where α1 and α2 are two additional parameters that will be described further below.
Note that the tomographic interaction matrix H in equation 2.80 has been replaced by
the AO interaction matrix Mint. This implies several things. Firstly, it implies that we
are considering that the number of turbulence layers that we seek to estimate equals the
number of deformable mirrors (NL = NDM ) and that the DMs are conjugated to the
same altitudes of the turbulence layers6. Secondly, it implies thatMV (i.e. the subspace
of the turbulence volume phase space EV that we seek to estimate and compensate for)
is limited to the subspace that can be generated by the DMs (see also the discussion in
section 3.2.1). The matrix Cu stands for the covariance matrix of the command vector
u. It contains the prior knowledge on the turbulence spatial statistics expressed in the
DMs space. The matrix Cu can be computed from the matrix Cϕ‖ (i.e. the turbulence
covariance matrix expressed in the Zernike basis) as:

Cu = PZ2V Cϕ‖(PZ2V )T , (4.40)

where PZ2V is the Zernike-to-Volts projection matrix defined in equation 4.8.

It is important to note that even though the MMSE reconstructor is the optimal
solution for the problem of wavefront reconstruction in MCAO (see chapter 2), there
is no reason to believe that this ad-hoc control law will guarantee the optimality of
the solution in a closed-loop MCAO system. In particular, note that the regularizing
term Cu is not well adapted for closed-loop MCAO systems because it stands for the
open-loop turbulence statistics which do not correspond to the statistics of the residual
turbulence after partial correction by the DMs.

Nevertheless, it has been empirically shown that by tweaking the parameters α1

or α2 in equations 4.38 or 4.39 it is possible to obtain a better performance than the
one obtained with a simpler TLS reconstructor. For instance, M. Le Louarn [83, 85]
has widely used this ad-hoc control law in simulation studies of closed-loop SCAO and
MCAO systems. Also, M. A. van Dam et. al. [151] have implemented this ad-hoc
control law in the Keck’s SCAO system and they have shown that after tuning the
α-parameter this ad-hoc control law can effectively provide a good performance. It

6This is the so-called model approximation introduced by T. Fusco et. al. [43]. Recall that we have
also used this approximation in our study of the MOMGI control law in chapter 3.
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Figure 4.50: (a) Ad-hoc control law formed by cascading an MMSE reconstructor with
a temporal controller. (b) Representation of the pseudo-open loop control (POLC) law.

should be noted that the α-parameter must be tuned for each observing conditions
(SNR, flux-level, etc.).

4.7.2 Pseudo-open loop control law

The pseudo-open loop control (POLC) was proposed by B. Ellerbroek et. al. [29],
and was later thoroughly studied by L. Gilles et. al. [57, 110]. The idea behind the
POLC law is to apply the MMSE reconstructor (eq. 4.38 or 4.39) to open-loop slopes
reconstructed from closed-loop data. In this way, the (open-loop) prior knowledge
incorporated in RMMSE is well adapted to regularize the reconstruction process.

Figure 4.50(b) shows a representation of the POLC law. The open-loop slopes
vector is denoted as sOL . Following the method of open-loop data reconstruction from
closed-loop data presented in section 4.2.3.4, it can be shown that for a system with a
total delay of two frames (τtot = 2T ), sOL is given by:

sOL(n) = s(n) + Mint u(n− 2) . (4.41)

where Mint is the interaction matrix of the AO system. Note that the product RMMSE sOL

produces already a command vector that could by applied to the DMs. However, no
temporal filtering would be applied to guarantee the stability of the control system.
Therefore, the authors of the POLC law proposed to reconstruct a command incre-
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ment vector ∆u as:
∆u(n) = RMMSE sOL(n)− u(n− 2) , (4.42)

to which a temporal controller can then be applied. For instance, for the case of a simple
integrator of gain gI , the voltage that is actually applied to the DMs is computed as:

u(n) = u(n− 1) + gI∆u(n) . (4.43)

In summary, the control equations describing the POLC law (using an integrator con-
troller) are:

sOL(n) = s(n) + Mint u(n− 2) (4.44)

∆u(n) = RMMSE sOL(n)− u(n− 2) (4.45)

u(n) = u(n− 1) + gI∆u(n) (4.46)

Note that the POLC control law requires two vector-matrix multiplications. L. Gilles [57]
has validated with numerical simulations the POLC law in the framework of the future
Gemini-south MCAO system (section 1.2.8.3).

4.7.3 Linear Quadratic Gaussian (LQG) control

The Linear Quadratic Gaussian (LQG) control is the most advanced control law pre-
sented in this section. The application of this control technique in adaptive optics was
first proposed by Paschall et. al. [103]. It has been more recently thoroughly studied
by B. Le Roux et. al. [131, 132] and C. Petit et. al. [109, 108] for both SCAO and
MCAO configurations. It consists of an optimal estimation of the turbulence volume
(in the sense of minimum variance) delivered by a Kalman filter, followed by an optimal
projection onto the DMs space.

The Kalman filter is a (linear) optimal estimator that can embrace both spatial and
temporal aspects in a single framework well suited for closed-loop AO systems. In fact,
it can be shown that the minimum-variance estimation method presented in section 2.6
for the problem of wavefront reconstruction in MCAO is a particular case of the Kalman
filter estimation method when temporal aspects are not taken into account [131].

The formulation of this control law is based on a state-space description of an
adaptive optics system. The state-space description is a time-domain mathematical
model. The details of this formulation can be found in references [132, 108]. For
instance, it can be shown that a possible state-space description of an MCAO system
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with a total of two-frames delay is given by:

X(n + 1) = AX(n) + ν(n) (4.47)

s(n) = CX(n)−Mint u(n− 2) + w(n) (4.48)

where X(n) is the state vector at instant n, defined as:

X(n) =




ϕtur(n + 1)
ϕtur(n)
ϕtur(n− 1)


 , (4.49)

and ϕtur(n) is the turbulence vector at instant n (see time diagram in figure 4.49). The
matrix A in equation 4.47 represents a mathematical model of the temporal evolution of
the state vector, and ν(n) is known as the state noise representing the random nature
of turbulence. Equation 4.48 describes the measurements delivered by the closed-loop
MCAO system. The matrix C is simply equal to C = [0 0 D], where D is the
WFSs matrix. Note that this equation is totally equivalent to the one presented in
equation 3.7. However, in this context it is given in the temporal domain whereas in
the context of chapter 3 it was presented in the frequency (Laplace) domain.

For the state-space description considered here, it can be shown that the equations
describing the LQG control law are given by [132, 108]:

X̂(n + 1) = AX̂(n) +AH∞ [s(n) + Mint u(n− 2)] (4.50)

u(n) = PX̂(n + 1) , (4.51)

in which the first equation represents the optimal estimation of X(n + 1) delivered by
the Kalman filter, and the second equation represents the optimal projection onto the
DMs. The matrix H∞ is known as the asymptotic observer gain. This matrix involves
the temporal and spatial statistical priors on the state vector and the measurement
noise. It can be regarded as the generalization to the closed-loop case of the MMSE
reconstructor presented in section 2.5. Finally, the matrix P in equation 4.51 stands
for an optimal projection of the state vector onto the DMs space. It is equivalent to
the projection matrix stated in equation 2.95 for the MV reconstructor.

It is important to note that this control law not only assures the optimality of the
solution (in the sense of minimum residual variance in the FoV of interest), but also
guarantees the absolute stability of the control system. On the other hand, this control
law also requires more computing power. Indeed, note from equations 4.50 and 4.51
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that the implementation of this control law requires four vector-matrix multiplications.
The experimental validation of the advanced control laws described in this section is

a required step to demonstrate the gain in performance with respect to simpler control
laws such as the TLS reconstructor + integrator control law used throughout this work.
C. Petit et. al. [108] have already performed a preliminary experimental validation of
the LQG on the SCAO bench available at ONERA. The experimental validation of
advanced control laws in MAD is also foreseen for the near future.



Summary and conclusions

In this work we have studied some aspects of the problems of spatial reconstruction
and temporal control in multi-conjugate adaptive optics (MCAO). The problem of
wavefront reconstruction in MCAO was studied in chapter 2 following the traditional
approach that considers an static and open-loop MCAO configuration. We proposed a
generalization of the matrix formulation of the approximate direct problem in MCAO
introduced by T. Fusco [42]. In its compact form, the model of the approximate direct
problem we proposed was expressed as (eq. 2.25):

s = Hϕtur‖ + H⊥ϕtur⊥ + w ,

where s is the WFSs measurement vector, and w is the corresponding measurement
noise vector. Also, ϕtur‖ is the finite-dimensional vector that contains the turbulence
modes we seek to estimate, and ϕtur⊥ is the (in principle infinite-dimensional) vector
that contains the turbulence modes that we have left out from ϕtur‖ . This last vector
is at the source of the aliasing on any adaptive optics system (SCAO, MCAO, . . .).
The matrix H was named as the tomographic interaction matrix and the matrix H⊥

was named as the aliasing interaction matrix. Based on this analytical formulation,
we then studied the reconstruction error —or estimation error— for the cases of the
least-squares (LS) and the minimum mean-square error (MMSE) estimation methods.
The reconstruction error was characterized by its covariance matrix, which turned out
to be (eq. 2.52):

Cε = RCwRT + [RH− I]Cϕ‖ [RH− I]T

+ [RH⊥ ]Cϕ⊥ [RH⊥ ]T .

We then focused our attention on the first and the third terms, because the first term
characterizes the propagation of the measurement noise through the reconstruction ma-
trix R, and the third term characterizes the propagation of the remaining error through
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the reconstruction matrix R, that is, the generalized aliasing in MCAO. Clearly, the
propagation of the different errors depends on the reconstruction matrix in question.
For the case of the least-squares reconstructor, we showed that the propagation of the
remaining error was as strong as the propagation of the measurement noise. In partic-
ular, by expressing the covariance matrix of the reconstruction error in the eigenspace
of H, we put in evidence that the remaining error was actually being propagated onto
the eigenmodes associated with low eigenvalues, i.e. the badly-seen modes. The results
of our analytical formulation were also validated with numerical simulations for an ex-
ample case. On the other hand, for the case of the MMSE reconstructor, we showed
that the propagation of the remaining error and the measurement noise is kept at a low
level for all eigenmodes, including the badly-seen ones, thanks to the statistical priors
taken into account in the creation of the MMSE reconstruction matrix.

In chapter 3 we studied the application of modal gain optimization in MCAO.
Modal gain optimization is a temporal control technique based on an modal integrator
controller in which the modal integral gains are fine-tuned in order to adjust the correc-
tion bandwidth of each controlled mode [55, 31]. The optimized modal gain associated
with the ith controlled mode is the one that minimizes its residual variance, which was
expressed as (eq. 3.41):

σ2
i =

∫ ∞

−∞
|Ei(jω)|2〈|ϕ̃MP

tur‖,i(jω)|2〉 dω

+
∫ ∞

−∞
|Hi(jω)|2〈|ϕ̃MP

tur⊥,i(jω)|2〉 dω

+
∫ ∞

−∞
|Hn,i(jω)|2〈|w̃MP

i (jω)|2〉 dω ,

where the first term characterizes the residual turbulence after correction, the second
term characterizes the propagation of the remaining error, and the third term character-
izes the propagation of the measurement noise. Since the propagation of the remaining
error can be as strong as the propagation of the measurement noise in MCAO, all the
three terms had to be taken into account in the minimization of σ2

i . We then showed
that this fact poses serious limitations to the practical implementation of modal gain
optimization in MCAO.

In chapter 4 we presented a series of studies related to the experimental validation
of MCAO and GLAO with the Multi-conjugate adaptive optics Demonstrator (MAD).
This is the first time, to our knowledge, that closed-loop MCAO and GLAO results
are obtained in the laboratory, confirming the feasibility of adaptive optics correction



SUMMARY AND CONCLUSIONS 231

in a larger (1’ to 2’) FoV. We confronted simulation and experimental results, and put
in evidence some differences between the performance in the whole FoV predicted by
simulations and the one actually obtained in the laboratory. We identified possible
causes for such differences which could lead to an improvement in the modelling of
GLAO and MCAO systems. The availability of the MAD system opens the door to the
experimental validation of more advanced control laws in the near future.

The work presented in this PhD thesis lead to several communications in collab-
oration with the ONERA and the MAD team [112, 109, 92, 93, 101, 77]. The char-
acterization of the generalized aliasing in MCAO and its implications in modal gain
optimization for MCAO will be the topic of a peer-reviewed paper to be submitted.



232



Bibliography

[1] A. Abahamid, J. Vernin, Z. Benkhaldoun, A. Jabiri, M. Azouit, and A. Agabi.
Seeing, outer scale of optical turbulence, and coherence outer scale at different
astronomical sites using instruments on meteorological balloons. Astronomy and
Astrophysics, 422(3):1123–1127, 2004.

[2] J. Ares and J. Arines. Influence of thresholding on centroid statistics: full ana-
lytical description. Applied Optics, 43(31):5796–5805, 2004.

[3] J. Arines and J. Ares. Minimum variance centroid thresholding. Optics Letters,
27(7):497–499, 2002.

[4] R. Arsenault, R. Biasi, D. Gallieni, A. Riccardi, N. Hubin, E. Fedrigo, R. Don-
aldson, S. Oberti, and S. Stroebele. A deformable secondary mirror for the VLT.
Advances in Adaptive Optics II, Proc. of SPIE, 6272, [6272-29], 2006.

[5] R. Arsenault, R. Donaldson, C. Dupuy, E. Fedrigo, N. Hubin, L. Ivanescu,
M. Kasper, J. Oberti, J. Paufique, S. Rossi, A. Silber, B. Delabre, J. L. Lizon, and
P. Gigan. MACAO-VLTI adaptive optics systems performance. Advancements
in Adaptive Optics, Proc. of SPIE, 5490:47–58, 2004.

[6] R. Avila, J. Vernin, and E. Masciadri. Whole atmospheric-turbulence profiling
with generalized SCIDAR. Applied Optics, 36(30):7898–7905, 1997.

[7] R. Avila, J. Vernin, and L. J. Sanchez. Atmospheric turbulence and wind profiles
monitoring with generalized SCIDAR. Astronomy and Astrophysics, 369(1):364–
372, 2001.

[8] M. Azouit and J. Vernin. Optical turbulence profiling with balloons relevant to
astronomy and atmospheric physics. Publications of the Astronomical Society of
the Pacific, 117(831):536–543, 2005.

233



234 BIBLIOGRAPHY

[9] H. W. Babcock. The possibility of compensating astronomical seeing. Publications
of the Astronomical Society of the Pacific, 65:229, 1953.

[10] H. H. Barret and Kyle J. Myers. Foundations of image science. Hoboken, NJ :
Wiley Inc., c2004, 2004.

[11] J. M. Beckers. Increasing the size of the isoplanatic patch with multiconjugate
adaptive optics. Very Large Telescopes and their Instrumentation, ESO Confer-
ence and Workshop Proceedings, 30:693–703, 1988.

[12] D. Bello, J. M. Conan, G. Rousset, and R. Ragazzoni. Signal to noise ratio of
layer-oriented measurements for multiconjugate adaptive optics. Astronomy and
Astrophysics, 410(3):1101–1U16, 2003.

[13] J. L. Beuzit, L. Demailly, E. Gendron, P. Gigan, F. Lacombe, D. Rouan, N. Hubin,
D. Bonaccini, E. Prieto, F. Chazallet, D. Rabaud, P. Y. Madec, G. Rousset,
R. Hofmann, and F. Eisenhuer. Adaptive optics on a 3.6-meter telescope - the
ADONIS system. Experimental Astronomy, 7(4):285–292, 1997.

[14] A. Blanc, T. Fusco, M. Hartung, L. M. Mugnier, and G. Rousset. Calibration
of NAOS and CONICA static aberrations - application of the phase diversity
technique. Astronomy and Astrophysics, 399(1):373–383, 2003.

[15] J. M. Conan. Etude de la Correction Partielle en Optique Adaptative. PhD thesis,
Université de Paris XI Orsay, 1994.

[16] J. M. Conan, G. Rousset, and P. Y. Madec. Wave-front temporal spectra in
high-resolution imaging through turbulence. JOSA A, 12(7):1559–1570, 1995.

[17] R. Conan. Modélisation des effets de l’échelle externe de cohérence spatiale du
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