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Abstract

It has long been known that the optical quality of the human eye varies continuously
in time. These variations are largely attributable to changes in the optical aberrations
of the eye, among which one of the principal influences is the presence of fluctua-
tions in the eye’s accommodative response. New technological developments now
permit us to study the dynamics of ocular aberrations and accommodation with un-
precedented resolution and accuracy. In this thesis, we present an in-depth analysis
of the dynamics of ocular aberrations and accommodation, measured with a high-
performance aberrometer. We aim to characterise the spectral content and statistical
properties of aberrations and accommodation. In particular, our results demonstrate
the systematic dependence of accommodation dynamics on the level of accommoda-
tive effort. Given that the temporal dynamics of ocular aberrations and accommo-
dation are generally known to be non-stationary, we include methods in our anal-
ysis that are targeted specifically towards non-stationary processes. We show that
as well as non-stationarity, the measured signals exhibit characteristics that suggest
long-term dependence and self-affinity. We then present a method of modelling the
temporal dynamics of ocular aberrations and accommodation, based on the findings
of our measurements and analysis. The model enables time-domain simulation of the
dynamics of these processes. Finally, we discuss the implications of our results, along
with possible applications and the potential impact of this work on future studies.
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Preface

The level of interest in the structure and function of the human eye stems not only

from the fact that sight is the most utilised of our senses, but also because of the im-

portance of the visual system as an extension of the brain. Though the human eye has

been studied by scientists for centuries, the work of Thomas Young and Hermann von

Helmholtz has perhaps been particularly instrumental in shaping our modern knowl-

edge of the human visual system [1, 2]. These experiments showed the influence of

the optical components within the eye on image formation. Young’s experiments on

accommodation demonstrated that the optical power of the eye varies in time due to

changes in the lens. Helmholtz showed that despite all the sophisticated and precise

tasks that can be performed with human vision, its optical qualities are far from ideal,

due in part to optical defects known as aberrations. Furthermore, he demonstrated

that these aberrations were time-varying. These dynamic features of the eye have

attracted much study since, and interest has been been further boosted in the last

decade by the development of ocular aberration correction using adaptive optics [3].

Advances in wavefront sensing methods and technology, along with developments in

fields such as corneal topography, mean that ocular wavefront dynamics can be stud-

ied with increased precision and accuracy. This thesis attempts to characterise and

model some of these time-varying properties of the eye, and to increase our under-

standing of them. In particular we look to answer questions such as: how do ocular

wavefront dynamics evolve in time? What are their causes and what factors influence

them? Are the dynamic changes merely a physiological byproduct, or do they play

an active role in the visual system - and if so, what is this role?

There are two main aims of this research. Firstly, we aim to improve our knowledge

and understanding of the temporal dynamics of the human optical system. This is

important in areas such as the investigation of the impact of these dynamic effects
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on visual performance, and the improvement of accuracy in the estimation of ocular

aberrations [4]. Secondly, we endeavour to develop a realistic model of ocular dy-

namics based on our findings. This not only assists us in understanding the nature

of the underlying processes, but could also be useful in the testing of aberrometers,

customised contact lenses, or in simulations of retinal image quality.

Parts of the project were carried out in collaboration with Charles Leroux of the Ap-

plied Optics Group, and with Dr. Luis Diaz-Santana of City University London. The

collaborative elements of work included in this thesis are detailed in the synopsis

below. The remainder of the thesis represents the author’s own work, except where

otherwise referenced or stated in the text.

Synopsis

Chapter 1 presents background information on the human eye. A general description

of the physiology of the human eye is given, followed by a more detailed look at the

particular properties of the eye that this thesis is concentrated upon, namely ocular

aberrations and ocular accommodation.

Chapter 2 is intended to lay the statistical and mathematical foundations for the rest

of the thesis. Some general properties of biomedical signals are discussed, followed

by a description of the statistical and signal processing tools used in the analysis and

characterisation of measured data. Some signal modelling techniques are also pre-

sented, with particular attention paid to the modelling of non-stationary processes.

Chapter 3 focuses on the dynamics of ocular aberrations. A general explanation of

wavefront sensing and aberrometry is given, followed by a technical description of

the particular aberrometer used throughout this work. The experimental procedure

involved in the measurement of the dynamics of ocular aberrations is described in

detail, and the results are presented along with some statistical analysis. The quality

of these results compared to previous studies is discussed, along with information

uncovered by the analysis. Section 3.2 describes work carried out in collaboration

with Charles Leroux of the Applied Optics Group, who designed and implemented

the aberrometer, developed the experimental procedure for measuring the dynamics

of aberrations, and also contributed to the data processing.

Chapter 4 describes measurements of the dynamics of the accommodative system.

The precise meaning of the accommodative signal is first defined, followed by a de-

scription of the experimental procedure used for its measurement. Results are pre-
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sented for 9 young, healthy subjects. Some spectral and statistical analysis is then

shown, including techniques that have not previously been used in accommodation

studies. Results are compared from subject to subject, and particular attention is paid

to the effects of changes in target vergence on the results. Evidence that suggests

self-affine and long-term correlated behaviour in accommodative response time se-

ries is presented, followed by a discussion of the implications of these findings. The

full body of work described in this chapter, apart from Section 4.5, was conducted in

collaboration with Charles Leroux of the Applied Optics Group and Dr. Luis Diaz-

Santana of City University, London.

Chapter 5 describes modelling of ocular aberrations and the accommodative response.

The motivations behind developing such a model are explained, and several mod-

elling methods that were considered throughout the course of the work are described,

along with their respective benefits and drawbacks. A non-stationary power-law

model is presented as the most accurate and useful of the modelling approaches. The

formulation of this model is described in detail, along with a discussion of how the

model parameters are selected. Some examples of simulation and validation of the

model are then presented. The chapter is concluded with a discussion of possible

modifications to the model, and some potential applications.

Chapter 6 concludes on the work presented in this thesis and discusses the implica-

tions for the study of ocular dynamics. Finally, some suggestions for future related

topics of research are given.

Publications

• C.M. Leahy and J.C. Dainty. Modelling of nonstationary dynamic ocular aberra-

tions. In Proceedings of 6th International Workshop on Adaptive Optics for Industry

and Medicine, Galway, Ireland, 6:342-347, 2007.

• C. Leahy, C. Leroux, C. Dainty, and L. Diaz-Santana. Temporal dynamics and

statistical characteristics of the microfluctuations of accommodation: Depen-

dence on the mean accommodative effort. Opt. Express, 18:2668-2681, 2010.
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Chapter 1

Optics of the Eye and Vision

Human vision is a complex process that consists of several interacting systems. In this

chapter we will describe some key elements of the eye and identify the functions and

limitations associated with them. We will proceed to discuss ocular aberrations and

ocular accommodation, which are key subjects of this thesis. This will help to give

an understanding of how these phenomena are quantified and interpreted, as well as

the challenges and limitations encountered in their measurement.

1.1 Optics of the Eye

The human eye is a robust optical system [5], whose purpose is to image objects onto

a sensing element (the retina). It consists of an optical path containing refractive com-

ponents, a limiting aperture, and a sensor. A schematic of the eye is given in Fig-

ure 1.1. In this section, we discuss some of the basic components of the eye, and their

relevance to this project. The most immediate refractive element encountered by light

incident upon the eye is the anterior surface of the tear film [6], which has a standard

refractive index of nt f ≈ 1.337 [7]. Given that the refractive index of air is 1, it can be

said that the interface between air and the tear-film is the largest change in refractive

index encountered in the eye [8]. The combination of the tear-film and the cornea

results in a smooth optical surface that refracts light. The cornea itself is the most

powerful refractive medium in the eye however, typically having an optical power of
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Chapter 1. Optics of the Eye and Vision

Figure 1.1: Schematic of the human eye.

around 40 dioptres (D) and a standard refractive index of nc ≈ 1.37 [3].

The next most significant refractive element in the eye is the lens, an epithelial tissue.

The refractive index within the lens is non-uniform, being greater in the centre than

in the periphery. Gullstrand [2] proposed an equation describing the refractive index

distribution within the lens. A value of neq = 1.42 has been suggested as the refractive

index for a theoretically equivalent uniform lens [9]. The function of the lens is to

provide a means of adjusting the refractive power of the eye, in order to bring objects

at different distances into focus. These adjustments are possible through changes in

the shape of the lens [10]. This process is known as accommodation, and will be

discussed further in Section 1.3.

In between the cornea and the lens is the iris, which forms the aperture stop of the eye.

The opening in the iris is commonly known as the pupil. The pupil size is modulated

by two antagonistic muscles, which are under reflex rather than voluntary control [9].

The most important factor affecting the pupil size is the level of illumination, with

the response to an increase in illumination being a decrease in pupil size. The pupil

size may naturally vary from about 2-8 mm in this manner, however the pupil size
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Chapter 1. Optics of the Eye and Vision

can also be artificially altered (e.g. through the use of drugs such as Tropicamide).

A detailed discussion of the various factors affecting pupil size can be found in the

literature [11].

The retina is the sensing element of the eye. The image formed on the retina is sam-

pled by light-sensitive cells known as photoreceptors. These cells are of two types,

rods and cones. Rods have higher sensitivity than cones but poorer spatial resolution

and a lower saturation level. They are typically associated with low-light vision [9].

In general, there are three types of cones, each of which have a different peak sensi-

tivity wavelength. The largest concentration of cones is found in the region known as

the fovea, which is important for performing tasks where visual detail is paramount.

The central region of the fovea is known as the foveola, and contains only cones. In

total, there are approximately 100 million rods and 5 million cones in the retina [3].

Visual information is transferred from the retina to the brain via the optic nerve. This

is achieved through the retinal ganglion cells, which receive visual information from

the photoreceptors and transmit them to the brain.

1.2 Ocular Aberrations

The quality of the image formed by an optical system is reduced by aberrations, and

the human eye is no exception. Aberrations can be classed as either chromatic or

monochromatic. Chromatic aberrations are related to dispersion, the variation of re-

fractive index with wavelength (e.g., within a lens). Monochromatic aberrations occur

even for light of a single wavelength. In this thesis we will concentrate on monochro-

matic aberrations, and so further references to “ocular aberrations” should be taken

to refer to monochromatic aberrations.

In geometrical optics, the ideal situation is for all rays emanating from a point object

to intersect at the point image. In practice, this is not achievable in most cases. Devi-

ations from the common ray intersection point in the image plane are observed, and

these are classified as aberrations [12]. Throughout the text we will make references

to the wavefront, which can be considered as the locus of points of equal optical phase

of a wave. The wave aberration is the optical deviation of the wavefront from a refer-

ence sphere measured along a particular ray. A detailed description of ray and wave

aberrations can be found in Mahajan [13].

The wave aberration W(ρ,θ), with radial co-ordinate ρ and azimuthal angle co-ordinate
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Chapter 1. Optics of the Eye and Vision

θ, can be represented using a polynomial expansion, of the form

W(ρ,θ) =
∞

∑
n=0

n

∑
m=0

am
n Pm

n (ρ,θ) (1.1)

where Pm
n denotes a polynomial term and am

n is the corresponding weight coefficient,

with angular frequency m and radial order n. Throughout this thesis, we will use

Zernike circle polynomials for expansion of the wave aberration. Zernike polyno-

mials are a useful expansion for describing the aberrated wavefront in an optical

system with a circular pupil, and have been used in many ocular aberration stud-

ies [3, 14–21]. Though they are only one of many possible representations for such

a system [3], Zernike polynomials have a number of properties that make them par-

ticularly suitable. Firstly, they form a complete orthonormal set over the unit circle.

Secondly, the polynomials in the Zernike expansion represent balanced aberrations.

This means that each polynomial represents a combination of power series terms that

is optimally balanced to give minimum variance across the pupil [22]. Another useful

property is that the coefficient of each term in the Zernike polynomial expansion rep-

resents its standard deviation, and the sum of the squares of the coefficients yield the

overall aberration variance. These factors have led to Zernike polynomials becoming

accepted among the vision community as an ANSI standard for reporting wavefront

aberrations of the eye [23].

We expand the phase aberration function in terms of a complete set of Zernike circle

polynomials as follows [13]:

W(ρ,θ) =
∞

∑
n=0

n

∑
m=0

cm
n

[

2(n + 1)

1 + δm0

]
1
2

Rm
n (ρ)cosmθ (1.2)

=
∞

∑
n=0

n

∑
m=0

cm
n Zm

n (ρ,θ) (1.3)

where δm0 is the Kronecker delta function, n and m are positive integers for which

n − m ≥ 0, and

Rm
n (ρ) =

(n−m)/2

∑
s=0

(−1)s(n − s)!

s!
(

n+m
2 − s

)

!
(

n+m
2 − s

)

!
ρn−2s (1.4)

is a polynomial of degree n in ρ containing terms in ρn, ρn−2, and ρm. The Zernike

expansion coefficients cm
n are given by:

cm
n =

(

1

π

)

[2(n + 1)(1 + δm0)]
1
2

∫ 1

0

∫ 2π

0
W(ρ,θ)Rm

n (ρ)cosmθρdρdθ (1.5)
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Chapter 1. Optics of the Eye and Vision

Figure 1.2: Periodic table of Zernike circle polynomials up to and including the 8th

radial order. The author would like to thank Dr. David Lara for help in producing
this image.

In practice, a finite number N of Zernike polynomials is used to represent the wave

aberration function, which can be expressed as follows:

W(ρ,θ) =
N

∑
n=1

n

∑
m=0

cm
n Zm

n (ρ,θ) + ǫ(ρ,θ) (1.6)

where ǫ(ρ,θ) denotes the modelling error. A pyramid representation of Zernike poly-

nomials up to and including the 8th radial order is given in Figure 1.2. Table 1.1 gives

the polynomial representations up to and including the 4th radial order. As men-

tioned previously, each aberration coefficient cm
n also gives the standard deviation of

its corresponding aberration term, and so once the expansion coefficients are known,

the variance of the wave aberration function can easily be determined as follows [22]:

σ2
W =

〈

W2(ρ,θ)
〉

− 〈W(ρ,θ)〉2 (1.7)

=
N

∑
n=1

n

∑
m=0

(cm
n )2 (1.8)

The quantity σ2
W is sometimes known as the RMS wavefront error. Another feature

8



Chapter 1. Optics of the Eye and Vision

Table 1.1: Zernike polynomial terms up to and including the 4th radial order [24].

n m Zernike Polynomial Name

0 0 1 Piston

1 -1 2ρsin θ y-tilt

1 1 2ρcos θ x-tilt

2 -2
√

6ρ2 sin2θ Astigmatism (±45◦)

2 0
√

3(2ρ2 − 1) Defocus

2 2
√

6ρ2 cos2θ Astigmatism (0◦ or 90◦)

3 -3
√

8ρ3 sin3θ y-trefoil

3 -1
√

8(3ρ3 − 2ρ)sinθ y-coma

3 1
√

8(3ρ3 − 2ρ)cosθ x-coma

3 3
√

8ρ3 cos3θ x-trefoil

4 -4
√

10ρ4 sin4θ y-quadrafoil

4 -2
√

10(4ρ4 − 3ρ2)sin2θ y-secondary astigmatism

4 0
√

5(6ρ4 − 6ρ2 + 1) Spherical Aberration

4 2
√

10(4ρ4 − 3ρ2)cos2θ x-secondary astigmatism

4 4
√

10ρ4 cos4θ x-quadrafoil

that makes Zernike polynomials particularly useful for studies of ocular aberrations

is that certain terms in the expansion can be intuitively related to commonly known

types of aberrations in the human eye. Standard ophthalmic prescriptions typically

aim to correct for defocus and astigmatism in the eye. Due to the balanced nature of

Zernike polynomials, these conditions are in fact distributed among multiple polyno-

mial terms [25]. For example, the Zernike Z0
2 term is related to the common focus error

conditions in the eye (such as myopia and hypermetropia) and hence is often referred

to as Zernike defocus, but the Zernike spherical aberration polynomial term, Z0
4 , also

contains a defocus component. The lack of rotational symmetry of the optical system

in the eye leads to astigmatism, and this is partly reflected in the Z−2
2 and Z2

2 terms.

Zernike terms of third order and above are commonly referred to as higher-order aber-

rations. These include aberrations that are well known in general optical systems and

optometry, such as spherical aberration and coma [9]. Spherical aberration describes

the phenomenon whereby rays from a point source that strike a spherical surface at

varying distances from its centre are refracted by different amounts, with the result

that they are not brought to a common focus. Coma is typically associated with the

apparent distortion of off-axis sources, e.g. due to decentrations in the optical sys-

tem [9].
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Chapter 1. Optics of the Eye and Vision

Early studies of aberrations other than defocus in the eye include work by Thomas

Young on astigmatism [1], as well as experiments later described by Gullstrand [2].

More recently, population studies have been carried out to assess the statistical occur-

rence of aberrations, including higher order aberrations [19, 20, 26]. The conclusion

from these studies were that the higher order aberrations are generally much smaller

in magnitude than defocus and astigmatism, though their contribution to the wave

aberration variance is still significant. It was also interesting to note that when aver-

aged across the population, the mean of the higher order Zernike aberrations tends

to zero, except for the Z0
4 spherical aberration term. Thibos et al. [19] also reported

significant correlations between certain pairs of Zernike terms, as well as the presence

of some bilateral symmetry between the left and right eyes.

Dynamics of Aberrations

Helmholtz provided early evidence that the aberrations of the eye fluctuate in time [2],

with the aid of a demonstration that is reproduced in Figure 1.3. The figure shows a

series of concentric circles. Due to the aberrations of the eye, some distortion will

be seen in the image. This distortion pattern can be seen to fluctuate in time, and

tends to be more noticeable at particular viewing distances. These fluctuations are

related to the fluctuations in ocular aberrations, and occur with corresponding fre-

quencies [7]. The causes of temporal changes in aberrations remain an open area

of debate. It is known that the eye’s focus generally fluctuates about its mean with

amplitudes of 0.03 − 0.5 D [27]. Though microfluctuations in accommodation are re-

sponsible for a proportion of this, they cannot explain the full amount. In particular,

correlations between mean accommodative level and Zernike aberrations have been

found [28]. The relationship between accommodation level and aberrations will be

discussed further in Chapter 4. Hofer et al. [15] suggested several reasons for the

fluctuations in ocular aberrations, including rotation of the eyes due to movements

(drift, saccades, microtremor), misalignments due to instability of the head position

during measurements, changes in tear-film thickness, and the influence of the heart-

beat. The frequency range of the dynamics have been reported by several authors.

While measurable power in fluctuations of defocus up to 5 Hz had been reported

in the 1980s [27], more recent studies have suggested that temporal fluctuations of

aberrations may have significant power up to 70 Hz or above [4].

The particular influence of the tear-film and its breakup on the dynamics of aber-

rations has attracted independent studies [29, 30], and it has been found that wave-

front variance attributed to the tear film is significant when compared to the overall

10



Chapter 1. Optics of the Eye and Vision

Figure 1.3: Helmholtz’s viewing chart to demonstrate fluctuations in aberrations of
the human eye. The phenomenon is generally best viewed with one eye, and with the
target held at a steady distance within the subject’s accommodative range. The time-
varying distortions that can be seen are the result of the time-varying aberrations of
the eye, and occur on corresponding time-scales.

wavefront variance induced by dynamic changes in aberrations. The influence of the

cardiopulmonary system has also attracted interest in recent years. An early study

by Winn et al. [31] found correlations between the arterial pulse and the frequency

component of greatest amplitude found in the defocus signal (typically 1-2 Hz). This

suggests significant influence of the pulse on ocular dynamics. Other studies have

shown a further correlation between the instantaneous heart-rate (which is related to

respiration) and a lower frequency defocus component (<0.6 Hz). The ocular pulse

itself has been shown to cause changes in the axial length of the eye of approximately

3-5 µm [32]. Other studies used a combination of cross-correlation and coherence

analysis to show that the influence of the cardiopulmonary system is apparent not

only in the defocus signal, but in higher-order aberrations as well [18, 33]. Zhu et

al. [18] suggested that the mechanisms linking the fluctuations of aberrations with

heart-rate are likely to be the same as for fluctuations in accommodation, and that

the origin of all these fluctuations may reflect changes in the lens shape or position

due to blood flow or related changes in intraocular pressure. The authors noted that

the correspondence was larger for the higher-order aberrations than for lower-order

aberrations in some cases. However, it should be noted that correlations between

certain pairs of Zernike modes are also known to exist [17]. These correlations may

simply reflect the balancing of modes in the Zernike expansion rather than a physi-

cally significant relationship [18]. Iskander et al. [16] presented analysis using a set of
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tools that had not previously been used for dynamic aberrations of the eye, including

a sophisticated method for removal of measurement artifacts and a time-frequency

expansion. This subject will be treated in more depth in Chapter 3.

1.3 Ocular Accommodation

It was first demonstrated by Scheiner in 1619 that the human eye changes its refrac-

tive power when we focus at near objects [34]. However it was not until 1801 that

this change in power was shown by Thomas Young to be due to the lens [1]. He con-

cluded this in his Bakerian lecture on the mechanism of the eye by demonstrating that

accommodation was not due to changes in corneal curvature or the axial length of the

eye, and thus the lens was the only alternative [10].

The classical theory of accommodation is attributed to Helmholtz [2]. This theory de-

scribes how the zonular fibres, ciliary muscles, and the lens (see Figure 1.1) interact

during accommodation. When the ciliary muscles are in a relaxed state, the zonular

tension holds the lens (which is enclosed in a collagen capsule) in a comparatively

flattened state. This is referred to as the relaxed or unaccommodated state of the eye.

The contraction of the ciliary muscles leads to reduction in the zonular tension. This

in turn leads to a change in shape of the lens, which becomes more spherical and

therefore increases its optical power. This increased state of optical power is desirable

for viewing near objects. An alternative theory of the accommodative mechanism

was proposed by Schachar [35], in which the author states that contraction of the cil-

iary muscles leads to a stretching force along the equatorial zonular fibres, and it is

this stretching force that increases the equatorial diameter of the lens. This in turn

is said to cause the anterior and posterior surfaces to increase in curvature, giving

the lens increased optical power. However, this theory is at odds with other studies

that suggest the equatorial diameter of the lens in fact decreases during accommoda-

tion [10]. Presbyopia is the term used to describe the condition whereby the accom-

modative ability of the eye diminishes with age. The amplitude of accommodation

that a person is capable of declines naturally starting from childhood, and around the

age of 40-50 years it typically falls to a minimal level. There have been many popula-

tion studies of the onset and prevalence of presbyopia, utilising both subjective and

objective methods [10]. Some include empirical models of the relationship between

accommodative amplitude and age, such as the study by Ungerer [36], which fitted a

quadratic regression model to measured data. The physiological explanation of pres-

byopia is not universally agreed upon, however most theories involve some changes
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Figure 1.4: Illustration of the difference between the relaxed and accommodating
states of the (non-presbyopic) eye. Note that this case represents a myopic eye, as
the far point is defined on the optical axis. For an emmetropic eye, the far point is at
infinity, and for hypermetropia it is behind the eye.

in the lens due to age, for example, hardening of the lens itself. A description of some

of the different theories of accommodation is given by Atchison and Smith [9]. When

conducting a study of accommodation involving several subjects, it is inevitable in

practice that there will be some variation in their respective accommodative ampli-

tudes. However, by limiting the age range of the subjects, one can assemble a sample

that have amplitudes that are at least comparable (e.g., within 1-2 D of each other).

In this thesis, we will sometimes refer to “young, healthy subjects”. In the context of

accommodation, this can be taken to refer to subjects who do not exhibit an advanced

stage of presbyopia, or any known accommodative irregularities.

The spherical refractive error of the eye is an important consideration when conduct-

ing studies on aberrations or accommodation. The three common spherical refractive

conditions are known as myopia (short sight), hypermetropia, and emmetropia (“nor-

mal” sight). To better understand how these conditions impact on vision, we will refer

to the far point and near point of the eye. These points define the range of clear vision,

and are illustrated (for a myopic eye) in Figure 1.4. When the accommodative system

is not active (i.e., the ciliary muscles are fully relaxed), the eye is said to be focused on

the far point, which is then conjugate to the retina. When the maximum amplitude

of accommodation is being used, the eye is said to be focused on the near point (this
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also means that the eye has its greatest possible refractive power. In an emmetropic

eye, the far point is considered to be at infinity. In practice, such a situation is im-

practical to measure and so instead an eye with a far point of 4 m or more away can

be considered to be emmetropic [9]. For hypermetropia, the far point lies behind the

eye. Hypermetropic subjects may be able to view distant objects clearly by accommo-

dating, however. For myopic eyes, the far point lies a finite distance in front of the

eye. The near point for a young, healthy myopic or emmetropic subject is typically a

short distance in front of the eye. To determine the amplitude of accommodation, one can

simply measure the difference in vergence between the near point and far point [9].

For example, consider a subject whose near point is 0.2 m from the eye, and whose far

point is at 1.25 m. The corresponding vergence in dioptres is given by the reciprocal

of the distance, therefore the near point and far point vergences are 5 D and 0.8 D

respectively. The amplitude of accommodation is given by the difference between the

two, i.e., 4.2 D.

Accommodation is a dynamic process. As noted in the previous section, the mi-

crofluctuations of accommodation play an important part in the variability of the

optical quality of the eye. Thus, these microfluctuations have attracted much study.

Early work carried out by Campbell et al. [37] characterised the main features of the

commonly recorded accommodation signal: a low frequency component (<0.5 Hz),

which corresponds to the drift in the accommodation response, and a peak at higher

frequency, usually observed in the 1-2 Hz band. This frequency composition was

confirmed in later studies [27, 38, 39].

An area of continued debate is the possible roles that microfluctuations play in the

function of accommodation, and the question of whether they are involved in the

accommodative control system. It is clear that under steady-state conditions, a fluc-

tuation in one direction tends to improve the image focus, while a fluctuation in the

other direction makes it worse. This has led to the suggestion that the fluctuations

could serve as a simple odd-error cue to optimise or “fine-tune” the initial accom-

modative response to a stimulus [40]. A review by Charman [27] found it unlikely

that the microfluctuations play any role in guiding the initial response to a change

in accommodative stimulus (which is normally characterised by a 0.36-0.4 s reaction

time and a total response time of about 1 s [41]). The review identified three possible

roles for the microfluctuations about a steady-state level:

• They could be intrinsically related to the accommodative control system, with

characteristics that change according to the viewing conditions in order to opti-
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mise performance.

• They could have characteristics that are independent of the control system, but

still provide cues that assist control.

• They could simply represent state-dependent noise, and have no input to the

control system.

Most authors, when referring to the frequency composition of the microfluctuations,

distinguish between a low frequency (<0.5 Hz) band and a higher frequency band (1-

2 Hz). Many of the researchers involved in these studies assert that the high frequency

components are thus more likely to be a mechanical property of the accommodation

system, rather than the response of a closed-loop system [27, 39]. In particular, it is

known that much of the high frequency band can be attributed solely to the lens,

as far less high frequency activity is seen in aphakic1 subjects [31]. The relationship

of the microfluctuations to the mean response of the accommodative system is of

primary interest, because the physical nature of the process changes depending on

the level of accommodative effort. Several authors have reported that the amplitude

of the high frequency component increases with the target vergence [15, 28, 42, 43].

However, a study by Miege et al. [38], shows data obtained on two subjects for which

the high frequency component (around 2 Hz) decreased when the target was brought

closer than 5 D. This was attributed to the subjects having to accommodate at the

upper limit of their range. In Chapter 4 we will investigate thoroughly the effect of

accommodative effort on the dynamics of accommodative response.

There has also been debate as to whether the lower frequency microfluctuations have

a role in the control of accommodation. The low frequencies are too slow to assist

the dynamic response to a stimulus change in accommodation, however this does

not rule out the possibility that they may assist the steady-state response. Another

of Campbell’s results was that the low frequency component is increased when the

depth of field of the subject’s seeing is increased. This was backed up by later work,

and Charman’s review summarised in detail the changes in measurements of this low

frequency component depending on various viewing conditions [27]. These include

pupil size [39,44], luminance level [40,44], contrast level [27], and mean accommoda-

tive response [4, 38]. It has been suggested that the slow drifts in the accommodation

signal could play an active role as part of “accommodation correction cycles” [45].

An alternative functional role for the microfluctuations in accommodation was put

1Aphakia is the absence of the lens of the eye, usually due to surgical removal.
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forward by Crane [46]. The author suggested that the microfluctuations could serve

to improve the eye’s depth of focus. If the microfluctuations do play a useful role,

then intuitively it would follow that they should produce a detectable change in the

retinal image. This was addressed in the original study by Campbell et al. [37], who

found that sensitivity to the fluctuations was dependent on the mean accommodative

level. The authors concluded however, that changes in the retinal image due to the

microfluctuations (which they found to have an amplitude of about 0.2 D) could be

detectable at least under certain conditions.

Kotulak et al. [43] proposed that accommodation may be able to respond to changes

below the detectable threshold in the image. The authors were able to find accom-

modative responses with stimulus changes of as low as 0.12 D. In a subsequent work,

the same authors also proposed that the accommodative control system could utilise

information about both accommodation level and retinal image contrast to influence

its output [47]. A study by Winn et al. [48] found that the RMS of typical accommo-

dation microfluctuations was comparable to the threshold of blur perception under

cycloplegia2, and therefore could be detectable by a normal observer. Because por-

tions of the accommodation signal were found to exceed the eye’s depth of focus, the

authors concluded that microfluctuations of accommodation are capable of provid-

ing information to control accommodation without the need for an additional mech-

anism. It is therefore possible that microfluctuations of accommodation are solely

responsible for controlling the response to very small changes in the accommodative

stimulus. The measurement, analysis, and interpretation of the microfluctuations of

accommodation will be investigated in detail in Chapter 4.

2Cycloplegia is paralysis of the ciliary muscle of the eye, resulting in a loss of accommodative ability.
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Chapter 2

Mathematical Background

The application of scientific and engineering principles to the study of biological and

medical information has long been a distinct field of life science. Before the advent

of modern digital computing, much of the interpretation of this data had to be per-

formed by human inspection, for example, by medical professionals. This type of

“manual” processing was severely limited in both accuracy and the number of differ-

ent features that could be reliably extracted from measured data. Advances in sensing

technology mean that large varieties and quantities of biological and medical data are

now more readily available. Techniques that involve the application of mathematical

approaches to interpret this data and extract diagnostic information is referred to as

biological or biomedical information processing [49]. When the information in question

takes the form of measured electrical signals, such as in electrocardiography (ECG)

or electroencephalography (EEG), the term biomedical signal processing is often used.

These concepts are at the core of the field of biomedical engineering.

The rationale behind any signal processing is typically either (i) to extract a priori

information from the signal; or (ii) to interpret the nature of a physical process from

which the signal arises, based on the signal’s characteristics and/or how changes in

the process affect these characteristics [50]. The latter forms the motivation behind

much of the signal processing carried out in this research. We will employ some clas-

sical methods in signal processing such as spectral analysis. We will also utilise meth-

ods of statistical signal processing, which involves the treatment of signals as stochastic

processes (containing both deterministic and stochastic components). In this chapter
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we will introduce the mathematical and statistical tools that are central to the analysis

presented later in the thesis. Papoulis (1991) [51] is a useful text regarding stochastic

processes and is referred to throughout the chapter.

2.1 Stochastic Processes, Time Series, and Signals

Throughout the course of the thesis we will frequently deal with stochastic processes,

time series, and signals, depending on whichever term is most appropriate to the

situation. A stochastic process is a continuous or discrete sequence of random variables

in time and/or space. Suppose an experiment has a number of possible outcomes i

defined in a sample space S. With each possible outcome, we associate a function

x(t,η). A particular outcome leads to a different function x(t), which we refer to

as a realisation of the process x. The set of all possible realisations is known as the

ensemble [52]. For a discrete stochastic process, t belongs to some set T, which can

be for example a point in time, a point in space, or a space-time vector. A time series

refers to a special case of a stochastic process where T represents only time. Typically,

data points in a time series are uniformly spaced, e.g., T = 1,2,3, . . .. Time series

and time series models are often used to analyse and describe real processes, and to

allow the prediction of future values of the process (known as forecasting) [53]. In the

general sense, the term signal refers to a single-valued representation of information

as a function of an independent variable (e.g., time or space). For physical processes,

a signal (either continuous or discrete) typically represents a measure of some form

of energy produced by the process [50]. Signals may be real or complex, and can

be a function of more than one variable. In this thesis, all uses of the term “signal”

refer to real-valued, scalar functions of time. The physical meaning of each stochastic

process, time series, or signal will be be described as each is introduced in the text,

and the terms will be used interchangeably in certain situations where it is considered

appropriate.

2.1.1 Statistics of Stochastic Processes

Distribution and Density Functions

To understand the statistics of a random process, we can examine its first-order statis-

tics. That is to say, we examine the random variable x(t) at a particular value of t. The
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cumulative distribution function (CDF) of this random variable is given by:

F(x, t) = P(x(t) ≤ x) (2.1)

where F denotes the CDF and P refers to the probability operator. The probability

density function (PDF), denoted f , can be defined as the derivative of the CDF [52]:

f (x, t) =
∂F(x, t)

∂x
(2.2)

Note that f (x, t) is positive valued and normalised, i.e. the conditions f (x, t) ≥ 0 and
∫ ∞

−∞
f (x, t)dx = 1 must be satisfied for the PDF to be valid.

First and Second-Order Properties

To completely describe the first and second-order properties of a stochastic process,

knowledge of the nth order joint distribution function F(x1, x2, . . . , xn; t1, t2, . . . , tn) is

required. This quantity is not of much practical use however [52], so we instead make

use of the expected value, autocorrelation function, and autocovariance function.

The mean of x(t) is the expected value of the random variable x(t):

E{x(t)} = 〈x(t)〉 =
∫ ∞

−∞
x(t) f (x, t)dx (2.3)

The autocorrelation Rxx(t1, t2) of a real-valued process x(t) is defined as the expected

value of the product x(t1)x(t2), i.e.

Rxx(t1, t2) = 〈x(t1)x(t2)〉 (2.4)

The autocovariance Cxx(t1, t2) can then be defined by

Cxx(t1, t2) = Rxx(t1, t2) − 〈x(t1)〉 〈x(t2)〉 (2.5)

It is sometimes useful to refer to the correlation coefficient rxx(t1, t2), particularly when

one wishes to use correlation to interpret the strength of linear relationship between

two random variables. It is defined as:

rxx(t1, t2) =
Cxx(t1, t2)

√

Cxx(t1, t1)Cxx(t2, t2)
(2.6)

Note that σ2(t, t) = Cxx(t, t) gives the variance of the process. For a complex random
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process z(t) = x(t) + iy(t), the autocorrelation function is given by

Rxx(t1, t2) = 〈z(t1)z∗(t2)〉 (2.7)

If two processes x(t) and y(t) are under consideration, the cross-correlation function is

Rxy(t1, t2) = 〈x(t1)y∗(t2)〉 (2.8)

2.1.2 Stationarity and Ergodicity

A stochastic process x(t) is said to be strictly stationary if its statistical properties are

invariant to a shift in the time origin. This means that the processes x(t) and x(t + τ)

have the same statistical properties for any value of τ. The definition requires that

all n-point probability density functions are the same, regardless of time or position.

This implies that

f (x1, x2, . . . , xn; t1, t2, . . . , tn) = f (x1, x2, . . . , xn; t1 + τ, t2 + τ, . . . , tn + τ) (2.9)

and so the probability density function of the process is invariant to a time origin

shift. Thus, we can conclude that the PDF is independent of t altogether, i.e.

f (x, t) = f (x) (2.10)

A process x(t) is deemed to be wide-sense stationary (WSS) if its expected value 〈x(t)〉
is a constant and its autocorrelation function depends only on τ = t1 − t2, i.e.

Rxx(t1, t2) = Rxx(τ) = 〈x(t + τ)x∗(t)〉 (2.11)

A useful property in this case is

〈

|x(t)|2
〉

= Rxx(0) (2.12)

which shows that the average power of a WSS process is independent of t. It should

be noted that although a strictly stationary process is also WSS, the converse is not

necessarily true. The value τ is often known as the lag parameter. It follows from Eq.

2.11 that the autocovariance of a WSS process also depends only on τ:

Cxx(τ) = Rxx(τ) − 〈x(t)〉2 (2.13)
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The correlation coefficient in this case is given by

rxx(τ) =
Cxx(τ)

Cxx(0)
(2.14)

Finally, if a WSS stochastic process x(t) has the property Cxx(τ) = 0 for |τ| > τc, the

constant τc can be referred to as the correlation time of the process. It is defined as:

τc =
1

Cxx(0)

∫ ∞

0
Cxx(τ)dτ (2.15)

Other Forms of Stationarity

A stochastic process x(t) is sometimes referred to as asymptotically stationary if the n-

point joint PDF f (x1, x2, . . . , xn; t1 + τ, x2 + τ, . . . , xn + τ) is independent of τ for large

values of τ.

The term stationary in an interval or quasi-stationary can be used to refer to a process

that is stationary within a limited range on t. Cyclostationarity refers to the case where

statistical properties are invariant to a shift in the origin by integer multiples m of a

certain period T. In this case, we can rewrite Eq. 2.9 as

f (x1, x2, . . . , xn; t1, t2, . . . , tn) = f (x1, x2, . . . , xn; t1 + mT, t2 + mT, . . . , tn + mT) (2.16)

A process is said to be stationary in the increments if its increments form a stationary

process. Finding the increments of a discrete process is known as differencing, which is

analogous to differentiation for a continuous process. In some cases, the differencing

operation may have to be performed several times to yield a stationary result [53].

Differencing will be discussed in more detail later in this chapter.

Ergodicity

At the beginning of this section, we associated a function x(t,η) with a particular

outcome η of a stochastic process, each outcome yielding a different x(t), i.e., a differ-

ent realisation of the process, where the set of all possible realisations is termed the

ensemble. If N is the number of all possible realisations, the ensemble average can be

written as

µ(t) =
1

N

N

∑
i=1

x(t,ηi) (2.17)
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In many real-life applications, only a single realisation of the process is available. If

the process is ergodic, we can still obtain an estimate of µ by using the time average of

this single realisation. We form the time average µt = µ̂ as follows:

µt =
1

2T

∫ T

−T
x(t)dt (2.18)

If x(t) is an ergodic process, µt will converge to µ as the length of the available reali-

sation approaches infinity. In this manner, for an ergodic process one may exchange

ensemble averages with time averages. An ergodic process must be stationary, but

the converse is not necessarily true [51].

Testing for Stationarity in a Time Series

Though stationarity of a time series can be informally investigated by visual inspec-

tion [54], it is sometimes useful to test a given time series or signal to assess whether or

not it is stationary. In general, it is not possible to test rigorously for strict stationarity,

and so we instead focus on assessing wide-sense stationarity.

There are two general approaches to testing for stationarity - parametric and non-

parametric. Parametric approaches typically involve the derivation of a parametric

model of the time series, e.g., a time-varying ARMA model [55, 56]. This type of

modelling approach is addressed further in Chapter 5. On obtaining such a model,

one can track the changes in the system parameters over time to assess non-stationary

behaviour. This typically requires making certain assumptions about the nature of the

data e.g. that it has a Gaussian distribution. Non-parametric methods do not require

the same assumptions [57]. These methods are generally based on the idea that one

can look for stationarity (or lack thereof) in a given time series by computing one or

more statistical measures over a moving time window [58].

The first step in performing a non-parametric test to check for stationarity is to choose

a statistical property that the test will be based upon. For example, the mean of the

time series can be tracked from one time window to another. If the value of the

mean varies significantly, one may conclude that there is a wandering baseline or

low-frequency component (possibly an artifact) present. This is common in biomedi-

cal signals such as ECG; however in many such applications a high-pass filter is em-

ployed to block these effects. Therefore, variation in the mean of the time series alone

may not have consequences for the type of analysis being performed. The variance

of non-stationary processes can also change significantly when examined over short
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periods. This is a common feature of speech signals, and is symptomatic of systems

that have time-varying filtering characteristics [58]. As stated in Eq. 2.11, for a process

to be WSS, its autocorrelation function must be independent of shift in the time ori-

gin. The autocorrelation function for a non-stationary time series should vary when

computed over different time windows.

The runs test is a simple method to ascertain time-invariance of statistical measures

of a time series, and is used in such fields as econometrics [59], biomedical signal

analysis [50], and electrical engineering [54]. A time series of length N is first divided

into k non-overlapping segments. The statistic of interest, for example the sample

variance, is calculated for each segment and denoted pi where i is the index of the

segment. The median value of p (denoted pmed) is found and removed from each p,

yielding a sequence of values qi = pi − pmed. The number of changes in sign in this

sequence is then found. This value plus one gives the number of runs for the test.

Lessard [59] gives a table of acceptable bounds on the number of runs for a stationary

random process, assuming certain confidence intervals. One can consult this table

and if the test result for the number of runs does not fall within these bounds, the

hypothesis of stationarity is rejected. As with all hypothesis tests, the runs test has

limited power in that at best it can only enable one to reject a hypothesis of stationarity

based on statistical significance. The performance of the test ultimately is dependent

on the subjective selection of the test statistic and the segment size k.

2.1.3 Non-Stationary Processes

It can be said that conventional analysis of time series and signals is heavily depen-

dent on stationarity. The reason why stationarity is such an attractive property is

that it attaches a condition of “statistical stability” to a process. In practical situations

however, the assumption of stationarity is usually an approximation. When non-

stationarity becomes significant to the point that conventional analysis is rendered

inadequate, we are required to relax this assumption. If we simply drop the concept

of stationarity completely, there is very little we can say about a particular process.

Instead, in many cases we replace the assumption of stationarity by a more general

notion that still allows us to carry out meaningful analysis [60]. Thus, when we are

presented with a non-stationary process for which an assumption of strict or wide

sense stationarity is not feasible, we must first assess what “type” of non-stationary

process it is.

A non-stationary process can be thought of as one which arises from a time-variant
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system, i.e., a system with parameters that vary in time [58]. One of the simplest

forms of non-stationary process occurs in the situation where the observed process

x(t) is the sum of a deterministic function ψ(t) and a zero-mean stationary process

v(t):

x(t) = ψ(t) + v(t) (2.19)

The function ψ(t) can be thought of as a “trend”, which allows the mean of the process

〈x(t)〉 to vary over time. For example, ψ(t) could impose a steady growth or an os-

cillation corresponding to seasonal behaviour. This particular type of non-stationary

process could be analysed by estimating the deterministic function ψ(t), subtracting

it from the time series, and then analysing the remainder as a stationary process. It

may also be possible to remove the trend by differencing. The dth order difference ∆d

for a discrete time series x(k) can be written as:

∆dx(k) =
d

∑
k=0

(

d

k

)

(−1)d−kx(n + k) (2.20)

The order of differencing d required to render the time series stationary depends on

the characteristics of the particular process [53]. If the non-stationarity in the series

takes the form of “shifts” in the mean, then one order of differencing will typically

suffice to remove the non-stationarity. A process with variations in local slope or a

more complicated structure is more likely to require additional differencing.

Box and Jenkins [53] showed that autoregressive models with certain choices of pa-

rameters can generate non-stationary processes. Autoregressive processes will be de-

scribed in more detail in Section 2.4. The non-stationary behaviour produced by this

class of model is of a special type, which is referred to as “explosive behaviour” by

Priestley [60]. Though the second-order properties of the process vary over time, the

evolution of the process is completely determined by the model parameters. There-

fore, the time series generated by such models are to a certain degree homogeneous,

even if they do meet the criteria for non-stationarity. This may be an unnatural restric-

tion if one’s ultimate goal is the analysis and modelling of non-stationary processes

whose statistical properties vary in an arbitrary manner over time. It would seem a

natural progression to consider parametric models whose parameters can vary arbi-

trarily. This approach has been adopted by several authors [58, 60–62], and will be

discussed further in the coming sections.
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2.2 Frequency Domain Analysis

2.2.1 Power Spectrum

The power spectrum or power spectral density (PSD) describes how the power of a signal

or time series is distributed with frequency. The Wiener-Khinchin theorem states that

the power spectrum (denoted P) of a WSS process x(t) is the Fourier transform of its

autocorrelation function:

Pxx(ω) = F {Rxx(τ)} =
∫ ∞

−∞
Rxx(τ)e−iωtdτ (2.21)

where ω is the angular frequency. Though x(t) may be real or complex, Pxx(ω) is a

positive real function of ω, since Rxx(−τ) = R∗
xx(τ). If we consider a discrete time

series x(n), we must rewrite the above definition, based on a discrete representation

of the autocorrelation function Rxx(m), where m is the sample lag. In this case, the

power spectrum is defined as:

Pxx(ω) =
∞

∑
m=−∞

Rxx(m)e−iωm (2.22)

Note that in this case Pxx(ω) is the discrete time Fourier transform (DFT) of Rxx(m).

In practical applications involving stochastic processes, only a finite portion of the

signal or time series is available, and thus we cannot fully stipulate Rxx(m). For a

signal of length N (in samples), R(m) is defined for −(N − 1) < m < (N − 1). We

must instead estimate the power spectrum, a technique commonly known as spectral

estimation. There are two general approaches to spectral estimation: parametric and

non-parametric. Parametric spectral estimation involves modelling the signal as the

output of a filter, such that values of the autocorrelation for |m| ≥ N − 1 can be ex-

trapolated and used to estimate the filter coefficients. This is particularly useful in

situations where little data is available i.e. N is small. Non-parametric methods of

spectral estimation are implemented directly on the signal and do not require model

parameters to be estimated. These methods are limited by the fact that they are per-

formed on a windowed autocorrelation sequence i.e. the autocorrelation function is

assumed to be zero for |m| ≥ N − 1. In many cases, Rxx(m) is very small for large val-

ues of m, and so non-parametric methods can lend themselves well to larger amounts

of data. In this thesis we generally have large N, and thus we will employ mainly

non-parametric methods of spectral estimation.
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The periodogram is a method widely used in non-parametric spectral analysis. Con-

sider a time series x(n) of finite length N. We attempt to obtain an estimate of P(ω).

From Eq. 2.22 it is clear that we first need to estimate Rxx(m) based on available data.

An estimate is obtained via:

R̂xx(m) =
1

N − |m|
N−1−|m|

∑
n=0

x∗(n)x(n + m) (2.23)

where m = 0,1,2, . . . , N − 1. An estimate of the power spectrum (called the peri-

odogram) can be obtained via:

P̂xx(ω) =
1

N

∣

∣

∣

∣

∣

N−1

∑
n=0

x(n)e−inω

∣

∣

∣

∣

∣

2

(2.24)

This method is typically implemented on a computer using the fast Fourier transform

(FFT). It should be noted that

lim
N→∞

〈

P̂xx(ω)
〉

= Pxx(ω) (2.25)

and so the expected value of the power spectrum estimate converges to the true spec-

trum as the length of the time series increases. However, the variance of the power

spectrum does not converge to zero with increasing N1, and so the periodogram is

not a consistent estimate of the PSD [63]. The variance of the periodogram can be

reduced by averaging a number of statistically independent estimates. This can be

performed using estimates based on different observations of the time series. If only

a single realisation is available, the time series can be divided into segments and an

estimate of the PSD can be performed on each and then averaged. This procedure is

commonly known as Bartlett’s Method [58], and can be implemented as follows:

P̂B,xx(ω) =
1

N

K−1

∑
j=0

∣

∣

∣

∣

∣

L−1

∑
n=0

x(n + jL)e−inω

∣

∣

∣

∣

∣

2

(2.26)

where K = N/L is the number of segments used. This modification reduces the vari-

ance of the periodogram by a factor of 1/K in exchange for a loss in resolution. A

further reduction in variance can be achieved by allowing the segments to overlap.

This modification is known as Welch’s Method, and the periodogram in this case is

1In fact, Var
(

P̂xx(ω)
)

≈ P2
xx(ω) for large N [51].
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given by:

P̂W,xx(ω) =
1

KL

K−1

∑
j=0

∣

∣

∣

∣

∣

L−1

∑
n=0

x(n + jD)e−inω

∣

∣

∣

∣

∣

2

(2.27)

where D = (N + L)/(K − 1). The periodogram can also be smoothed by “window-

ing” the time series with a window function w(n) of length N. Windowing also serves

to reduce spectral leakage, an artifact resulting from the use of a finite length time series

in the Fourier transform calculation. Using a window function, Eq. 2.24 is rewritten

as follows:

P̂w,xx(ω) =
1

NU

∣

∣

∣

∣

∣

N−1

∑
n=0

x(n)w(n)e−inω

∣

∣

∣

∣

∣

2

(2.28)

where

U =
1

N

∣

∣

∣

∣

∣

N−1

∑
n=0

w(n)

∣

∣

∣

∣

∣

2

(2.29)

The choice of window function is typically made depending on the particular require-

ments (e.g., in resolution). A table of window functions and their properties is given

by Bruce pg. 252 [50].

Cross-Spectral Density

For two jointly stationary processes x(t) and y(t), one can define the cross-spectral

density Pxy as the Fourier transform of their cross-correlation function:

Pxy(ω) = F
{

Rxy(τ)
}

=
∫ ∞

−∞
Rxy(τ)e−iωtdτ (2.30)

2.2.2 Least-Squares Spectral Analysis

Least squares spectral analysis (LSSA) refers to a method of spectral estimation that

employs least squares fitting of sinusoids to time series. It is sometimes referred to

as the Vanic̆ek method, after the author who first described it in detail [64]. It has

many similarities to Fourier-based spectral estimation [65, 66], but has several prop-

erties that make it preferable to these methods in certain circumstances. The prin-

ciple of the method is that a discrete time series can be represented by a weighted

sum of sinusoids. Though the sinusoidal frequencies can be chosen arbitrarily, one

can improve the fit by choosing frequencies that minimise the residual error after fit-

ting. The number of sinusoids used must be less than or equal to the number of data

samples [67]. One of the most attractive features of this method is that it can be ap-
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plied to non-uniformly sampled signals, such as discrete signals with missing data

points, whereas Fourier-based methods generally only apply to continuous signals or

discrete signals with evenly spaced data points [68]. In fact, the least squares spec-

trum can be considered to be a natural extension of Fourier methods to non-uniform

series [65, 69]. The potential advantage of LSSA in the low-frequency range is partic-

ularly noticeable [64].

The method proposed by Vanic̆ek was subsequently simplified by Lomb [65]. Scar-

gle [66] showed that Lomb’s method was akin to a modification of the definition of

the classic periodogram for unevenly sampled signals. This “modified periodogram”

is commonly known as the Lomb-Scargle periodogram [69], and is defined as:

P̂LS,xx (ω) =
1

2

{

[∑k x(k)cosω (t(k) − τ)]2

∑k x(k)cos2 ω (t(k) − τ)
+

[∑k x(k)sinω (t(k) − τ)]2

∑k x(k)sin2 ω (t(k) − τ)

}

(2.31)

where x(k) is the value of the kth data point, and τ is defined by

tan (2ωτ) =
∑k sin2ωt(k)

∑k cos2ωt(k)
(2.32)

It was shown by Scargle that this periodogram (given certain modifications) is in fact

equivalent to Vanic̆ek’s original least squares method. A comprehensive analysis of

the statistical properties of the Lomb-Scargle periodogram and a comparison to the

DFT-based periodogram were also given by the author [66].

2.2.3 Time-Frequency Analysis

Non-stationary processes emerge from systems whose parameters vary in time, and

thus the frequency content of these processes is not constant. Fourier-based spectra

have zero time resolution; they give us information about what frequencies existed

throughout the entire duration of the signal, but not when they existed. Consequently

for non-stationary processes, the power spectrum as we have treated it up until now

is of limited interest [51]. For processes of this type, any form of “spectrum” must be

allowed to become time-dependent, regardless of how it is defined.

The time-bandwidth relation is an important consideration in time-frequency analy-

sis [58]. Consider a signal x(t), with frequency domain representation X(ω). The

instantaneous energy E is sometimes defined as E(t) = |x(t)|2, or in the frequency

domain as E(ω) = |X(ω)|2. The two representations can be related by the classical
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Fourier transform:

X(ω) =
1√
2π

∫ ∞

−∞
x(t)e−iωtdt (2.33)

Thus, |x(t)|2 and |X(ω)|2 cannot be changed independently [70]. The time-bandwidth

relation for all signals can be stated as

∆t∆ω ≥ 1

2
(2.34)

This inequality is sometimes described as an “uncertainty principle” [58,62,70], how-

ever it should be noted that this does not refer to uncertainty in measurement. Rather,

it is a result imposing that both the time and frequency resolution of a particular signal

cannot be arbitrarily small at once.

For a non-stationary signal, obtaining representations of E(t) and E(ω) may not give

sufficient information. The general aim of time-frequency analysis is to obtain some

joint distribution W(t,ω), which represents the instantaneous energy in both time

and frequency [70]. The total energy is then given by

∫ ∫

W(t,ω)dtdω =
∫

|x(t)|2 dt =
∫

|X(ω)|2 dω (2.35)

The corresponding marginal distributions of time and frequency are

Wt(t) =
∫

W(t,ω)dω = |x(t)|2 (2.36)

and

Wω(ω) =
∫

W(t,ω)dt = |X(ω)|2 (2.37)

The Short-Time Fourier Transform

Perhaps the simplest and most intuitive method for performing time-frequency anal-

ysis is the short-time Fourier transform (STFT). The basic principle is that the signal

under examination x(t) is split into segments, and then Fourier analysis is performed

on each segment in turn. The STFT is given by

X(τ,ω) =
1√
2π

∫ ∞

−∞
x(t)w(t − τ)e−iωtdt (2.38)

where w(t) is a window function centred around zero, with τ being known as the

running time (effectively a lower resolution version of time t). The magnitude squared
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of the resultant spectrum X(τ,ω) is known as a spectrogram i.e.

WSTFT,xx = |X(τ,ω)|2 (2.39)

Note that the spectrogram is a function of τ rather than t. The resolution of the spec-

trogram is dependent on the size of the window function, as well as the type of win-

dow function (often a Gaussian or Hann window) used. For a discrete signal x(n),

the STFT can be calculated as follows:

WSTFT,xx = |X(m,ω)|2 =

∣

∣

∣

∣

∣

∞

∑
n=−∞

x(n)w(n − m)e−iωn

∣

∣

∣

∣

∣

2

(2.40)

where w(n) is the discrete version of the window function. The simple nature of the

STFT makes it easy to implement and interpret, however it has inherent disadvan-

tages. The most apparent is the necessary trade-off between time and frequency reso-

lution [58]. It should be noted that in the case of the STFT, this trade-off is artificially

imposed due to the introduction of the window function rather than inherent prop-

erties of the signal itself. Also, the spectrogram is not unique, and is not necessarily

zero when the signal itself is zero [70].

The Wigner-Ville Distribution

The Wigner-Ville distribution is a generalised spectrum for time-frequency analysis.

It was developed as a spectral analysis technique from the well-known Wigner func-

tion in quantum mechanics, and is a member of the more general Cohen’s class of

time-frequency distributions [70]. The Wigner-Ville distribution is defined as:

WWV,xx(t,ω) =
1

2π

∫ ∞

−∞
x
(

t +
τ

2

)

x∗
(

t − τ

2

)

e−iωτdτ (2.41)

Intuitively, its calculation can be thought of as follows. At a particular time of interest

t, we multiply a segment of the signal of length τ to the left of t by a similar portion to

the right, giving x
(

t + τ
2

)

x∗
(

t − τ
2

)

. We then take the Fourier transform with respect

to τ, and repeat the process for all desired values of t. The Wigner-Ville distribution is

real, unique, and satisfies the conditions for obtaining marginal distributions of time

and frequency given in Eq. 2.36 and Eq. 2.37, respectively. For a finite duration signal,

it is zero outside the end points and the band limit (if any). However, like the STFT,

it is not necessarily zero when the signal is zero [70]. The discrete implementation of
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the Wigner-Ville distribution can be written as:

WWV,xx(n,m) =
1

π ∑
k

x∗(n + k)x(n − k)e−
2imk

N (2.42)

where N is the length of the data vector, and n and m are discrete points in the time

and frequency domains respectively. In practice, to implement the algorithm one

forms the quantity x∗(n − k)x(n + k) and then performs a fast Fourier transform

(FFT). This procedure is then repeated for each value of n, i.e., each discrete time

point.

It can be seen from Eq. 2.41 that the Wigner-Ville distribution is a non-linear trans-

form. As a consequence it does not admit superposition, i.e., the spectrum of a multi-

component signal is not equal to the sum of the individual spectra of each component.

The spectrum of a multi-component signal will contain “cross-terms”, which can be

considered artifacts. This effect can be suppressed by amending Eq. 2.41 to include a

smoothing kernel [16,62]. The choice of this kernel can be tailored to suit the particu-

lar application. Choi and Williams [71] proposed the following kernel function,

Φ(η,τ) = e−α(ητ)2
(2.43)

with which we can rewrite Eq. 2.41 as follows:

WWVC,xx(t,ω) =
1

2π

∫ ∞

−∞
Φ(η,τ)x

(

t +
τ

2

)

x∗
(

t − τ

2

)

e−iωτdτ (2.44)

The introduction of Φ(η,τ) has a “low-pass” effect on the resulting spectrum, by sup-

pressing the higher-frequency cross-terms. The Wigner-Ville distribution is typically

computed using a fast Fourier transform algorithm [72]. The cone-shaped kernel is an

alternative kernel function, which also attempts to smooth cross-terms while main-

taining good time and frequency resolution [73]. In this case, the kernel function is

defined as

Φ(η,τ) = g(τ) |τ| sinαητ

αητ
(2.45)

where g(τ) is a smoothing function. With this kernel, we can rewrite the time-frequency

distribution of Eq. 2.41 in a form known as the Zhao-Atlas-Marks (ZAM) distribu-

tion [70]. The ZAM distribution for a non-stationary process x(t) is given by

WZAM,xx(t,ω) =
1

4π

∫ ∞

−∞
g(τ)e−iωτ

∫ t+|τ|

t−|τ|
x∗
(

u +
τ

2

)

x
(

u − τ

2

)

dudτ (2.46)
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Similarly, the cross-ZAM distribution for two non-stationary processes x(t) and y(t)

is given by

WZAM,xy(t,ω) =
1

4π

∫ ∞

−∞
g(τ)e−iωτ

∫ t+|τ|

t−|τ|
x∗
(

u +
τ

2

)

y
(

u − τ

2

)

dudτ (2.47)

The ZAM distribution has the advantage that it can completely remove the cross-term

between two components that have the same center frequency [73].

The major advantages of the Wigner-Ville spectrum include its strong ability to re-

solve components in multi-component signals, and the fact that it reduces to the or-

dinary spectral density if the signal under examination is stationary. Aside from the

cross-terms described previously, another disadvantage of the Wigner-Ville spectrum

is that it can produce negative values, which are not physically meaningful [62].

Time-Frequency Coherence

In the context of signal processing, the coherence function is a useful normalised mea-

sure of the cross-correlation of the spectral components of two jointly stationary pro-

cesses. For two such processes x(t) and y(t), the coherence function can be defined

as:

Γxy(ω) =
Pxy(ω)

√

Pxx(ω)Pyy(ω)
(2.48)

where Pxx and Pyy denote the PSD of x(t) and y(t) respectively, and Pxy is the cross-

spectral density of x(t) and y(t). The coherence function satisfies

∣

∣Γxy(ω)
∣

∣

2 ≤ 1 (2.49)

with
∣

∣Γxy(ω)
∣

∣

2 ≡ 0 if x(t) and y(t) are uncorrelated, and
∣

∣Γxy(ω)
∣

∣

2 ≡ 1 if they are

related by an invertible, linear time-invariant system [74].

The coherence function can also be extended to the non-stationary case [74, 75]. For

two non-stationary processes x(t) and y(t), the time-frequency coherence function

can be written as:

Γxy(ω, t) =
Wxy(ω, t)

√

Wxx(ω, t)Wyy(ω, t)
(2.50)

where Γxy(ω, t) is a complex function, which must satisfy the condition:

0 ≤
∣

∣Γxy(ω, t)
∣

∣

2 ≤ 1 (2.51)

32



Chapter 2. Mathematical Background

White and Boashash [76] showed that the only choice of time-frequency distributions

that yield meaningful estimates of Γxy(ω, t) are positive time-frequency distributions

of Cohen’s class. Muma et al. [75] proposed an estimator for the time-frequency co-

herence function, based on the ZAM distribution. We are grateful to the authors for

providing us with the MATLAB code for the implementation of this estimator. It is

defined as:

Γ̂ZAM,xy(ω, t) =
W (c)

ZAM,xy(ω, t)
√

W (c)
ZAM,xx(ω, t)W (c)

ZAM,yy(ω, t)
(2.52)

for all (t,ω)∈R. Note that W (c)
ZAM,xy(ω, t) refers to the cross-ZAM distribution, which

is smoothed by a Gaussian smoothing kernel c(t,ω).

2.3 Statistical Properties

Power-Law Distributions

A quantity x obeys a power law if it is drawn from a probability density function

f (x), where

f (x) ∝ x−α (2.53)

where α is a constant parameter known as the power law exponent or scaling parame-

ter [77]. In most real situations 2 < α < 3, though this is not exclusively the case. It is

difficult to show that an observed quantity is drawn from a power-law distribution,

instead one can attempt to show that the observed data is consistent with a model of

the form given in Eq. 2.53. It is of interest in some situations to determine the power

law exponent α of an empirical data set that exhibits power-law behaviour. Taking

the log of both sides, Eq. 2.53 can be rewritten as

log10 f (x) ∝ −α log10 x (2.54)

This implies that if one plots a representation of a particular PDF on a doubly log-

arithmic plot, a straight line with slope −α would be expected if the data follows a

power-law distribution. Though α could be estimated by performing a linear regres-

sion, it should be noted that this method can lead to significant bias under commonly

observed conditions [77]. The Hill estimator is an alternative approach to estimating
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α that can give improved results. The Hill Estimator can be computed as follows:

α̂ = 1 + n

[

n

∑
i=1

ln

(

xi

xmin

)

]−1

(2.55)

where xi, i = 1,2, . . . ,n are the observed values of x such that xi ≥ xmin. This gives

an asymptotically unbiased and consistent estimate [77]. It is commonly found that

a lower bound on the region of power-law behaviour xmin exists, such that the distri-

bution does not follow the power-law form for x < xmin. This can be seen in e.g. the

symmetric Lévy-stable distribution where a power-law is the dominant influence in

the tail region [78].

A notable feature of processes with power-law distributions is the presence of self-

similarity. An object is said to have geometrical self-similarity if it can be related to parts

of itself by similarity transformations. Self-similarity is a key concept to the study of

fractal objects. The sum of N random variables with a power-law type probability

density function is known to have a self-similar structure [78]. If one looks at a graph

as a geometrical object, conceptually the notion of self-similarity could be applied to

the graph of a function of time. This is not strictly applicable as the ordinate and

abscissa of such a plot are dependent on the units used, and scaling would be an

issue. Under these circumstances, the term self-affine is more appropriate than self-

similar [50]. A strictly self-affine process can be defined as a process whose PDF is

scale-invariant2 [79], i.e.,

f (x, t) = b−H f (x, t) (2.56)

where H is a constant and b is an arbitrary scaling factor. As with the definition of

stationarity, it is also possible to define a process that is wide-sense self-affine. This refers

to a process where only the first and second-order moments are scale-invariant. For

Gaussian processes, wide-sense self-affinity is equivalent to strict self-affinity. To find

a function of time that could be exactly geometrically reconstructed from a union of

transformations of itself under scaling in time and amplitude would not be a realistic

situation. Instead, one can aim to measure a degree of statistical self-similarity in a

process. In general, a random process x(t) can be said to be statistically self-similar

if the processes x(t) and b−αx(t) are statistically indistinguishable. A well-known

example of a self-similar process is ordinary one-dimensional Brownian motion. An

illustration of this, along with a description of some methods to measure statistical

2The term “scale-invariance” generalises the concept of fractals. In our case, scale-invariance refers
to the observation that fluctuations appear to occur on all time-scales, regardless of amplitude. The
interested reader is directed to Sornette Pg. 148 for a more detailed treatment [78].
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self-similarity in time series is given by Bruce [50].

“1/f” Behaviour and Long-Term Correlation

Self-similarity has been reported in the spatial and temporal structure of many phys-

iological processes [80], such as heart-rate [81, 82], auditory nerve firings, lung in-

flation, breathing, walking, and blood pressure. Many of these processes exhibit a

property whereby their power spectral density P(ω) is inversely proportional to fre-

quency, a phenomenon commonly known as 1/ f noise (where f = ω
2π refers to the

cyclic frequency). As it is generally referred to, 1/ f noise implies that

P( f ) ∝
1

f γ
(2.57)

where γ is a constant. In loose terms, γ is not necessarily required to equal unity for

the process to be described as 1/ f noise. However, given that γ = 0 is the condition

for white noise and γ = 2 for Brownian noise, it can be safely assumed that for the pro-

cess to be classed as 1/ f noise or “1/ f -like”, one should at least expect that 0 ≤ γ ≤ 2.

This type of relationship implies that the current state of the process depends not only

on its most recent values, but with its long-term history in a self-affine manner [78].

The random 1/ f process is in general self-affine [79]. Several different explanations

have been proposed for the ubiquity of 1/ f noise in nature, such as intermittent be-

haviour and self-organised criticality, but the origin is unknown in many cases [80].

2.4 Signal Modelling

Signal modelling is the use of mathematical models to represent a particular signal,

or the system that generates this signal. The parameters of these models can then be

used in signal analysis, and in some applications are useful in pattern recognition or

diagnostics. Depending on the application, the model parameters may give us insight

into physical or physiological aspects of the system. Signal models are also useful for

the generation of surrogate data, which can be used as a basis for further statistical

study [83]. Signal models often include noise or other artifacts along with the “true”

signal in order to make the model more realistic [58]. A simple model of a biomedical

signal x(t) could be given as

x(t) = s(t) + v(t) (2.58)
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where s(t) denotes the true signal and v(t) is additive noise (often assumed to be

Gaussian white noise). The inclusion of v(t) is intuitive, as in effect it means that if the

same measurement of x(t) was performed multiple times under identical conditions,

each measurement would be different due to the noise. However, in reality s(t) itself

may be a stochastic process and therefore the value of s(t) can also vary with repeated

measurements. For this reason, Eq. 2.58 may constitute an unrealistic model.

Modelling a Stochastic Signal Using a Discrete-Time Linear System

The future values of a stochastic process (or signal) cannot be predicted exactly [53].

This may be due to the fact that the mechanisms of the system that generated the

signal may be randomly changing, or due simply to the fact that we do not fully un-

derstand their behaviour. In any case, we can attempt to model the signal by making

an assumption that the unexplained variability in the signal is due to the presence

of random disturbances [50]. Assuming the process is stationary, we can construct

a parametric model in the form of a general linear time-invariant (LTI), discrete time

system. This type of system can be represented by the difference equation

y(n) = −
p

∑
k=1

aky(n − k) +
q

∑
k=0

bkx(n − k) (2.59)

where x(n) is the input, y(n) is the output, and ak and bk are the system parameters.

The order of the system is determined by p and q. Intuitively, the above equation

specifies that the output of an LTI system is a weighted linear combination of its input,

as well as of its own past states. The system can also be described by its z-domain

transfer function H(z), where

H(z) =
∑

q
k=0 bkz−k

1 + ∑
p
k=1 akz−k

(2.60)

An illustration of the general form of a discrete-time LTI system is given in Figure 2.1.

For the signal modelling problem, the input is unknown and instead we aim to model

a discrete-time observable process x(n) as the output of a linear system driven by a

random disturbance ν(n). We assume that ν(n) is a white noise process with mean

µν = 0 and variance σ2
ν equal to its power spectral density. This leads us to the follow-

ing model for x(n), known as an autoregressive moving average (ARMA) model [53].

x(n) = −
p

∑
k=1

akx(n − k) +
q

∑
k=0

bkν(n − k) (2.61)
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Figure 2.1: Illustration of the input-output relationship for a standard linear time-
invariant (LTI) discrete-time system.

Figure 2.2: Illustration of the input-output relationship for the signal modelling prob-
lem. Note that the observed process x(n) is modelled as the output.

Thus, we can redraw the standard discrete-time LTI configuration of Figure 2.1 to

illustrate the signal modelling configuration; the result is shown in Figure 2.2.

In some cases, only the current state of the disturbance ν(n) is included in the model

equation, in which case only the ak terms need to be estimated. This is known as

an autoregressive (AR) model. The objective is to obtain the best possible linear sys-

tem model that will transform ν(n) into a process that has the characteristics of the

measured signal.

The model parameters ak and bk can be estimated by solving linear equations con-

structed from the autocorrelation function of the observed process. For an AR pro-

cess, we can find values for ak using the Yule-Walker or autocorrelation method [50]. We

attempt to model a process x(n) as:

x(n) = −
p

∑
k=1

akx(n − k) + Gν(n) (2.62)

But the input ν(n) to the process is unknown, therefore we must estimate x(n):

x̂(n) = −
p

∑
k=1

akx(n − k) (2.63)
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The error in this prediction can be written as:

e(n) = x(n) − x̂(n) = x(n) +
p

∑
k=1

akx(n − k) (2.64)

Next, we look to optimise the model by choosing the parameters ak that minimise the

total squared error ǫp:

ǫp =
∞

∑
n=0

e2(n) =
∞

∑
n=0

(

y(n) +
p

∑
k=1

akx(n − k)

)2

(2.65)

Minimisation is achieved by solving the following:

∂ǫp

∂ak
= 0, 1 ≤ k ≤ p (2.66)

This yields the following set of equations for 1 ≤ i ≤ p

p

∑
k=1

ak

∞

∑
n=0

x(n − k)x(n − i) = −
∞

∑
n=0

x(n)x(n − i) (2.67)

This gives us a set of non-linear equations to solve. To simplify, we assume that

the signal is zero outside the available data range N. Therefore the autocorrelation

sequence can be written as follows:

Rxx(i) =
N−i−1

∑
n=i

x(n)x(n − i) (2.68)

Substituting into the previous result, we get the normal equations:

p

∑
k=1

akRxx(i − k) = −Rxx(i), 1 ≤ i ≤ p (2.69)

The autocorrelation sequence Rxx can be estimated from the measured data. There-

fore we can solve for ak, completing the AR model.

One limitation of the ARMA approach is that in general it can only produce station-

ary output3. The problem of non-stationarity could be addressed more directly by

extending a model such as the ARMA type described above to encompass the non-

3ARMA-type models can generate non-stationary output if the parameters fulfill certain conditions.
However, this non-stationary behaviour is of a special type. This issue is dealt with in detail by Priestley
(1984) [60].
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stationary case. This could be achieved for example by allowing the coefficients of

the ARMA model to be time-varying [56], or by constructing an autoregressive mov-

ing average (ARIMA) model. ARIMA models are an extension of the standard ARMA

model [53]. Differencing is applied to the data (as described in Eq. 2.20 in order to

render it stationary. After differencing, the Yule-Walker (autocorrelation) method can

again be used to extract ARMA parameters from the data, leading to the completed

model:

z(n) = ∆dx(n) = −
p

∑
k=1

akx(n − k) +
q

∑
k=0

bkν(n − k) (2.70)

where d is the level of differencing.

2.5 Non-Stationary Signal Models

Following on from the stationary models introduced in the previous section, we now

discuss non-stationary signal models. In Section 2.1.3 we discussed the notion of

non-stationarity and how it is manifested in signals and systems. One of the simplest

such models was given in Eq. 2.19, which could be deemed a “trend plus stationary

residual” model [60]. The deterministic function ψ(t) further determines the type of

model. For example, ψ(t) could impose a steady growth or decay in the long-term

behaviour of the signal, or impose some “seasonal” constraint.

In the previous section, we intimated that ARMA or ARIMA-type models could be

used to model non-stationary signals and produce non-stationary output. The non-

stationary behaviour produced by these models is of a specific type, known as “ex-

plosive” behaviour [60]. Though the second-order statistics of these processes do

vary, their complete future evolution is governed by the parameters fitted to the ini-

tial data. ARMA models with freely varying time-dependent parameters (rather than

fixed parameters) would therefore be required to more accurately model processes

whose second-order statistics vary arbitrarily in time. Grenier (1985) described how

the ARMA approach could be adapted for non-stationary signals [56]. As in Eq. 2.62,

the process x(t) is considered to have been generated by a linear system, however the

impulse response terms of this system are assumed to be time-varying. A finite-order

discrete ARMA representation of this arrangement can be expressed as

x(n) = −
p

∑
k=1

ak(n − k)y(n − k) +
q

∑
k=0

bk(n − k)ν(n − k) (2.71)
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if and only if the impulse response satisfies certain conditions [56]. The model pa-

rameters ak(n) and bk(n) can be approximated by a weighted combination of known

deterministic functions, whose coefficients can in turn be estimated using more famil-

iar approaches such as the Yule-Walker method.

An alternative methodology is to use a linear model structure such as the AR process

of Eq. 2.62, but allow the random input ν(n) to be non-stationary. This approach has

been implemented in the modelling of non-stationary EEG [83], where a piecewise

linear frequency modulated sawtooth input is applied to an ARMA model, which

is then passed through a non-linear shaping function. Though the linear and non-

linear parts of the model are both static, the frequency modulation of the input signal

enables it to be used for processes that exhibit both non-linearity and non-stationarity.

Two common features exhibited by non-stationary processes are amplitude modu-

lation (AM) and frequency modulation (FM). These features can be identified via

time-frequency representations, and can be exploited to develop parametric mod-

els of signals. This approach was adopted in the modelling of ocular aberration dy-

namics by Iskander et al. [84]. Motivated by findings of AM and FM characteris-

tics in the dynamics of Zernike coma and spherical aberration, the authors sought to

model Zernike aberration components as AM-FM signals. Each aberration signal ci

was deemed to be a sum of distinct frequency components:

ci(n) =
L

∑
l=1

ui,l(n) (2.72)

where ui,l are the frequency components and n is the discrete sample time. Each ui,l

was fitted with a parametric model of the form:

ui,l(n) =

(

P

∑
p=0

gp

( n

N

)m
)

cos

(

Q

∑
q=0

rqnq

)

(2.73)

where N is the signal length, P and Q are model orders, gp are the amplitude modula-

tion parameters, and rq are the frequency modulation parameters. Using an analytic

signal representation, the authors obtained estimates of gp and rq by performing lin-

ear regressions. The authors reported the dynamics of short data samples (5 s) could

be well fitted with the AM-FM model, with a low model order of P < 20 and Q < 5.
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Dynamics of Ocular

Aberrations

In Chapter 1, we introduced the concept of ocular wavefront aberrations, and briefly

discussed their dynamic features. We will now address the measurement and quan-

tification of these dynamic changes in aberrations, and present some analysis of their

spectral content and statistical properties. This section of the project was part of a

collaboration with Charles Leroux, who was responsible for designing and building

the hardware and software for an aberrometer in the Applied Optics Group, as well

as developing the wavefront reconstruction algorithm.

3.1 Ocular Wavefront Sensing

One can define the wavefront of a light beam as the locus of points in space that are of

equal optical phase. For a collimated beam, this is a plane perpendicular to the axis of

propagation of the beam. In an aberrated optical system (such as the eye), the wave-

front will have departures from this plane. While wavefront sensing is the term used

to describe the measurement of wavefront aberrations in general, the measurement

of wavefront aberrations in the eye is typically referred to as aberrometry [7].

Ocular aberrometry was first directly performed by Smirnov in 1961, using a sub-
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jective technique [85]. Subsequent methods included approaches based on laser ray

tracing, the Foucault knife edge test, and double-pass intensity images. The Shack-

Hartmann sensor was first used for ocular wavefront sensing in 1994 [86]. Shack-

Hartmann sensors have since become established as the method of choice for many

researchers, due in part to their reliability and ease of use [3]. For these reasons,

Shack-Hartmann sensing is the method we used in this thesis.

Shack-Hartmann Wavefront Sensing

The basic operating principle of the Shack-Hartmann sensor involves a point source

at infinity that is imaged onto the retina, and is then considered as a secondary light

source (effectively consisting of backscattered light). The wavefront of this source

is then sampled with a lenslet array placed in a conjugate plane of the pupil. Each

lenslet focuses part of the wavefront onto a CCD camera, forming an array of image

spots. These spots are used to determine the aberrations of the wavefront.

An in-depth physical description of Shack-Hartmann wavefront sensing in the eye is

given by Bara [87]. This treatment defines the wavefront W(r) via the complex am-

plitude distribution u(r) = A(r)eikW(r) of a monochromatic wave at a given plane. It

is assumed that each lenslet can be treated independently. One can define the Fresnel

approximation of the propagation of the optical field along the optical axis (z-axis)

from the pupil plane z = 0 of the lenslet to the detector plane z = z0. This yields the

equation of propagation of the centroid ρc(z) of the light irradiance distribution I(r)

along the z-axis:

ρc(z) = ρc(0)

(

1 − z

f

)

+
z

ES

∫

S
I(r)∇Wa(r)d2r (3.1)

where r is the radial distance from the center of the corresponding spherical wave,

S refers to the subaperture area on the sensor, ES =
∫

S I(r)d2r, f is the focal length

of each lenslet, and Wa(r) is the wavefront incident on each lenslet. The centroid

position ρc(z) of the irradiance distribution I(r) in the infinite detector plane is pro-

portional to the spatial integration of the gradient of the wavefront W(r) over the

lenslet, provided that I(r) in the pupil plane is homogeneous over the lenslet. The

estimated gradient of the wavefront is scaled by the effective distance z0, which in

practice requires calibration.

The displacements of each spot with respect to a reference is proportional to the local

slope of the wavefront. This relationship is illustrated in Figure 3.1. After the irradi-

42



Chapter 3. Dynamics of Ocular Aberrations

Figure 3.1: Principle of Shack-Hartmann Wavefront Sensor.

ance data measured at the detector is processed, the position of the centroid of each

lenslet can be determined. Given that there are N lenslets, the wavefront sensor slope

measurements at the ith lenslet can be modelled as [87]:

mi =
ρc( f )

f
+ vi =

1

ES

∫

S
I(r)∇Wa(r)d2r + vi (3.2)

where vi is a noise term that accounts for readout, quantisation, and other noise

sources. As shown in Eq. 1.6, the incoming wavefront Wa can be expanded as a linear

combination of Zernike polynomials (though other orthonormal bases could also be

used). For ease of implementation, one can use a single-index arrangement of Zernike

polynomials, such as the system proposed by Thibos et al. [23]. We can thus write

Wa(r) =
N

∑
j=1

cjZj(r) (3.3)

This arrangement is convenient in that it facilitates us to rewrite Eq. 3.2 in a matrix

form:

m = Ac + v (3.4)

where m is a vector of length 2M, with the first M elements corresponding to the

x-components of each mi and the remaining M elements corresponding to the y-

components. The column vector c contains the coefficients ci, i = 1, . . . , N of the

Zernike expansion. A is a 2M × N matrix, defined by

Aki =
1

ES

∫

S
I(r)∇kZi(r)d2r (3.5)
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We cannot solve Eq. 3.4 exactly [88,89], so we adopt an alternative approach whereby

we attempt to find a solution to:

ĉ = Rm (3.6)

where R is known as the reconstruction matrix and is calculated in order to minimise

the norm ‖ĉ − Rm‖ [88]. Provided that 2M > N, Eq. 3.6 can be solved using an ap-

proximate least-squares fit:

R = (ATA)−1AT (3.7)

Assuming that the slope measurements mi and incoming wavefront Wa are correctly

modelled, Eq. 3.7 provides an unbiased estimate of the Zernike coefficients [87]. The

sensitivity and dynamic range of a Shack-Hartmann sensor depend on the particular

design and lenslet geometry. Estimation of the wavefront from the measured local

slopes is subject to fitting error, and the centroiding algorithm used to pinpoint the

position of the spots on the CCD is subject to several sources of error, including pho-

ton noise and readout noise [3].

It is important to remember that the light source used in the Shack-Hartmann sensor

actually passes through the eye twice, and as such can be considered a double-pass

problem. In a sensor with equal entrance and exit pupils, this potentially leads to

underestimation of the odd aberrations of the eye [90]. This problem can be effectively

reduced, however, by the use of a small (≤ 1 mm) pinhole to restrict the incoming

beam, which allows the beam to be considered unaberrated when it is focused on the

retina [21].

3.2 Experimental Setup and Procedure

Data was collected using a custom-built aberrometer based on a Shack-Hartmann

wavefront sensor. The experimental setup is shown in Figure 3.2. This section de-

scribes work carried out in collaboration with Charles Leroux of the Applied Optics

Group, who designed and implemented the aberrometer, developed the experimen-

tal procedure for measuring the dynamics of aberrations, and also contributed to the

data processing.
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3.2.1 The Aberrometer

Sensor Specifications

The aberrometer used a state-of-the-art CMOS detector, the NIR MicrovistaTM man-

ufactured by Intevac® for near infrared applications. The number of pixels of the

detector used to map the measured pupil fixed the frame rate that could be achieved.

We used three different configurations of the detector: 440 × 440, 396 × 396, and

286 × 286 pixels for frame rates of 80 Hz, 100 Hz, and 173 Hz respectively. The array

of lenslets was a square grid with a 200 mm pitch. Each lenslet corresponded to 18.5 ×
18.5 pixels of the detector, which was enough to maintain linearity on the estimated

centroid positions of the Shack-Hartmann spots. The pupil of the eye was imaged

onto the Shack-Hartmann lenslets with a magnification of 0.8, so the pupil of the eye

was effectively sampled with a spatial resolution of 250 µ m. The sampling properties

of the aberrometer are summarized in Table 3.2.1.

Table 3.1: Sampling properties of the aberrometer for 3 different configurations.

Measured Pupil Diameter (mm) No. of Lenslets Across Diameter Frame Rate (Hz)

3.9 15 173

5.4 21 100

6.0 23 80

Optical Layout

The optical layout of the system is shown in Figure 3.2. We used a scanning mirror

(conjugated to the pupil plane) to reduce the speckle effect linked to the scattering

properties of the retinal layers and to obtain time-resolved and low noise measure-

ments. A 4-f system relayed the exit pupil of the eye to the scanning mirror. We chose

the smallest scanning mirror possible, in order to maximise the scanning frequency

allowed by the galvanometer on which it was mounted. A second 4-f system conju-

gated the scanning mirror with the Shack-Hartmann sensor. All the lenses used in the

system were achromatic doublets, optimised for near infrared applications.

A field stop, placed in a plane conjugated with the retina, allowed us to cut the small

portion of the probing beam that was directly reflected by the lenses. These reflec-

tions, and the reflection from the cornea, were also controlled by translation of the

probing beam parallel to the optical axis of the instrument. This was done by tilting
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Figure 3.2: Aberrometer setup. A fixation arm is included, which allows a target to
be translated longitudinally. Figure reproduced courtesy of Charles Leroux.

the mirror, which was placed in a plane conjugated with the retina. When adjust-

ing the position of the probing beam, it was important to make sure that it was far

away from the position that maximises the Stiles-Crawford effect, which is typically

less than 2 mm away from the center of the pupil [91]. This reduced the amount of

light scattered from the fundus of the eye, but allowed us to collect data that had a

signal-to-noise ratio that was homogeneous over the entire pupil.

The aberrometer was calibrated using a point source located at a distance of 938 ±
1 mm away from the measurement plane. This meant that the power of the measured

wavefronts was reliably measured after removing the divergence of the reference,

to an accuracy of 0.001 D. Because of the chromatic effect of the optics of the eye,

the measured accommodative response values were biased by approximately −0.5 D

compared to the 0.53 µm central wavelength of our stimulus [19,92]. This bias was not

removed from our measurements, so the values given throughout this thesis can be

assumed to correspond to the absolute output of the aberrometer in the near infrared.

Fixation Arm

The aberrometer setup included a fixation target on a separate arm capable of longi-

tudinal translation, as shown in Figure 3.2. Figure 3.3 shows the composition of the
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Figure 3.3: Optical setup of the fixation arm. Figure reproduced courtesy of Charles
Leroux.

fixation arm in more detail. The fixation arm was connected with the aberrometer

via a dichroic beamsplitter. The source was a LED with central wavelength 0.53 µm

(green), which illuminated the fixation target. The target itself was a 6/12 Snellen “O”

letter with an angular size of 10 arcmin and stroke of 2 arcmin. It was printed with

a 600 dpi printer, giving a letter size of 2.5 mm (stroke 0.5 mm). The field of view

of the entire target (including the green background) was a circle of 1◦. The probing

beam was centered slightly off axis, so that it was seen by the subject just outside of

the green circular field.

The target vergence could be varied linearly with the translation stage, and so the

ocular wavefront aberrations could be measured when the subject was fixating at a

range of viewing distances. The dioptric demand induced by a 1 cm displacement of

the target towards the Badal lens Lb was +1.52 D. The maximum possible accommo-

dation demand that could be set in this way was approximately +12.5 D. The front

plane of the Badal lens Lb was conjugated to the pupil of the eye, thus the fixation

target had the same extent on the retina, regardless of the target vergence. Some sub-

jects required an astigmatism correction for comfortable viewing of the target. This

was provided by the insertion of a trial lens at plane Π. The effective pupil of the eye

was conjugated with plane Π on the fixation arm, where it was limited to 4 mm by a
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field stop.

Experimental Procedure

In all cases, the subject’s dominant eye was measured, while the non-dominant eye

was covered with an eye-patch. Eye dominance was assessed through an eye exam-

ination by a qualified optometrist prior to the experiments. The subject was aligned

using a bite-bar for stabilisation. The probing beam of the aberrometer was a laser

source set at a power approximately equal to 15 µW (λ = 0.78 µm), and was scanned

over a 1◦ field angle to remove speckle on the raw frames recorded by the sensor.

For measurements of aberrations, we generally acquired 4,000 data points per trial.

The temporal sampling frequency was set to 100 Hz, meaning each trial was approx-

imately 40 s in duration. An active pupil diameter of 5.4 mm was used for all mea-

surements; only subjects with a rest pupil diameter of greater than or equal to this

value were measured. The spatial sampling across the pupil was 250 µm. This corre-

sponded to 21 active lenslets across the diameter of the pupil.

3.2.2 Experimental Conditions and Variability in Measurement

There are a number of sources of variability in ocular wavefront sensor measure-

ments. These take the form of both experimental conditions over which we have

some degree of control (such as head movement, wavelength of the probing beam,

luminance level, subject fatigue), and other sources of variability that influence mea-

surements but cannot be controlled (cardiopulmonary influence, certain eye move-

ments, tear-film dynamics etc.). It is important to understand the many sources of

variability in the measurements and where possible, to limit their influence. In Chap-

ter 1, we introduced some of the factors that affect ocular aberrations. We will now

discuss a selected few of these factors in the context of how we can change or limit

the way they affect our measurements.

Eye Movements

Though some method of restricting head movement (such as a bite-bar) is sometimes

used in ocular wavefront sensing in order to help maintain alignment of the eye with

the optical system, there is still scope for significant misalignment due to eye move-

ments. Though some attempts to reduce misalignments due to eye movements can

be made (e.g., by using a stationary fixation target [16]), they are still always present
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to some degree. As a whole, although fixational eye movements are large enough

for us to perceive, we are generally unaware of them. If fixational movements are

eliminated (such as by use of a restraint on the eye itself [93]), our visual perception

fades away as a result of neural adaptation. These movements are therefore essential

to our vision. Eye movements are a source of error in the aberrometer measurements,

and they can be classified as having three distinct types: tremor, drift, and microsac-

cades [93].

• Ocular tremor (also known as microtremor or physiological nystagmus) is a wave-

like (but aperiodic) motion of the eyes. It has a low amplitude of 25 nm to

2.5 µm. Its frequency content has been reported to range from 90 Hz to 150 Hz [94].

The contribution of tremor to the maintenance of vision is unclear, but it is gen-

erally thought to be independent in the two eyes.

• Ocular drifts are slow motions of the eye that occur during fixation. They gener-

ally last for 0.2-1 s. During this time, the image under fixation is moved through

1 arcmin as a result [93]. Drifts can be used to maintain accurate fixation in the

absence of microsaccades in the visual system.

• Microsaccades are abrupt, jerking movements of the eye that occur during vol-

untary fixation. They are approximately 25 ms in duration, and their amplitude

can carry the retinal image across 5 arcmin (or several hundred photoreceptors).

Microsaccades generally play an important role in foveal vision, in helping to

correct fixation errors. For example, if drift moves the image away from the

fovea, microsaccades tend to bring it back. Unlike tremor, microsaccades in the

two eyes have been found to be conjugate [93].

Fluctuations in Accommodation

Though the steady-state fluctuations of accommodation cannot be actively controlled,

we can still adjust their impact on our measurements by taking advantage of the fact

that the amplitude of steady-state fluctuations in accommodation is affected by the

mean accommodative response [27,38,39,42], and so it follows that one could reduce

their impact on the measurement of aberrations by keeping the mean accommoda-

tive response at a minimum, i.e., by measuring aberrations at the subject’s far point.

The amplitude of the fluctuations can be reduced further by the use of cycloplegic

drops, such as Cyclopentolate or Tropicamide. These drugs also lead to pupil dila-

tion, which can allow improved spatial sampling of the backscattered light from the
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retina. However, one may argue that for vision studies the use of these drugs imposes

unrealistic conditions on the eye. For example, ocular aberrations are known to vary

spatially over the pupil, and are often more pronounced in the periphery [3]; a dilated

pupil size may therefore lead to an unrealistic representation of a subject’s aberrations

in a functional sense. The nature of accommodation and its effect on vision will be

addressed in more detail in Chapter 4.

Tear Film

The influence of the tear film on aberrometer measurements has been acknowledged

by several authors [7, 29, 30, 95]. Though it consists of three different layers (a lipid

layer, aqueous layer, and mucous layer) of varying function, refractive index, and

thickness, it is convenient from an optical point of view to consider the tear film as

having a standard refractive index of nt f ≈ 1.337. There has been some debate re-

garding the thickness of the tear film, with reported estimates ranging from 4 µm [96]

to 40 µm [97]. An interesting issue is whether or not the tear film is thick enough

to produce a level of variability in wavefront sensor measurements that would be

significant compared to other sources of variability. Gruppetta [29], found that the

contribution of the tear film to curvature sensor measurements of accommodation

was non-negligible. This was backed up by Dubra [7], who showed that for a conser-

vative estimate of tear film thickness (3 µm), a small sag in the tear film surface could

lead to a significant change in the Zernike defocus coefficient. The author went on to

show that this difference is significant enough to take a theoretically ideal eye out of

the diffraction limit, and to have a noticeable impact on vision. Zhu [95], performed

measurements of the ocular surface topography using a high-speed videokeratoscope

with a sampling frequency of 50 Hz. Results showed that the Zernike prism, coma,

and astigmatism coefficients exhibited the most change following a blink. The author

noted that the time taken for these coefficients to regain a semblance of stability var-

ied from 0.4 s to 3 s, suggesting that there is an inherent instability in the tear-film

build-up after a blink. It was also noted that the tear film dynamics are generally

associated with low-frequency components in the overall dynamics of aberrations,

while variations originating from the crystalline lens give rise to both high and low

frequency components.

It can be concluded that the tear film plays a role in affecting dynamic ocular aber-

rations. In this thesis, we did not consider the tear film dynamics independently.

Though tear film dynamics vary from subject to subject [30], we did not take mea-

sures to account for this effect, apart from only including young, healthy subjects in
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our studies, with no known problems relating to tear film (such as dry-eye).

3.2.3 Data Processing

Analysis of dynamic ocular wavefront sensor measurements often takes the form of

analysis of the Zernike coefficients as time series [4, 14–17, 29, 30, 33, 98, 99]. The dy-

namics of individual Zernike terms are often studied, as well as the time evolution of

the RMS wavefront error (see Section 1.2). Using the modal wavefront reconstruction

of Zernike polynomials introduced in Chapter 1, we can obtain temporal representa-

tions of each Zernike coefficient. This temporal reconstruction can be represented by

rewriting Eq. 1.6 as follows:

W(ρ,θ; t) =
N

∑
n=1

n

∑
m=0

cm
n (t)Zm

n (ρ,θ) + ǫ(ρ,θ; t) (3.8)

For our studies of aberration signals, we used an expansion of Zernike terms up to

and including the 8th radial order.

Dynamic ocular wavefront sensor measurements are often complicated by the pres-

ence of spurious values. For example, if the alignment of the eye is sufficiently dis-

turbed due to large head or eye movements, the sensor signal may be significantly

disrupted or lost altogether. The most common occurrences of spurious or missing

values, at least from the point of view of this thesis, are the result of the subject’s

blinking. The average rate of blinking for typical subjects with healthy eyes has been

stated as 12 blinks per minute [100]. For acquisition times of more than a few seconds,

it is therefore inevitable that the subject will blink during measurement. The subject

should not refrain from blinking, as doing so would disrupt the consistency of the

tear-film distribution and give distorted measurements. Subjects should therefore be

encouraged to blink naturally in a way that keeps the eye comfortable.

Removal of Blinks

For the pursuit of analysing the dynamics of ocular aberrations, we consider blinks

and other spurious sensor output values as interference. Therefore, it is desirable that

we remove them from the measured signal. Blinks often manifest themselves as sud-

den, large discontinuities in the sensor signal1. Perhaps the most obvious approach to

1Blink discontinuities are normally most apparent in the lower order Zernike terms or the RMS wave-
front error signal [16].
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remove the data samples corresponding to blinks would therefore be to apply some

threshold (e.g., a number of standard deviations from the mean) to the signal and

remove the extraneous data points [101]. This method would be very suitable for a

stationary, Gaussian process, but in practice it suffers from the non-stationary nature

of ocular aberration signals (which we will discuss later). Because the mean of these

signals tends to vary, and particularly so after a blink, it is difficult to apply a constant

threshold in an effective way.

Iskander et al. [16] suggested a more complex method of searching for impulsive be-

haviour in measured aberration signals, similar to the removal of data that do not fall

into a 95 % confidence interval. The authors showed improved results when com-

pared to the threshold method. However, blinks vary significantly in their duration,

and they often have an impact on the steady-state level of the aberration signal, as

well as the transient effect during the blink itself. This could be explained by dif-

ferences in the redistribution of tear-film with each blink, as well as eye movement.

With any algorithm based on thresholding or confidence intervals, there is always

some chance of failing to detect the presence of a blink, or detecting “false posi-

tives”. Therefore, the only certain way of removing blinks and other artifacts from

ocular wavefront sensor measurements is to do so manually. This can be achieved

by inspecting aberration signals for discontinuous or impulsive behaviour, and then

checking the corresponding Shack-Hartmann image frames to determine whether or

not there was valid input to the sensor. In this manner, one can remove as many

artifacts as possible from the measurements. In this project, this manual method of

artifact removal was used for all data.

Interpolation of Missing Values

The tear-film build up and eye movements associated with blinking had a noticeable

impact on the measured signal up to 1 s after the beginning of a blink (e.g., due to

tear-film re-organisation, vignetting of the pupil by the eyelid, eye movements, and

secondary blinks). These transient phenomena are not related to the true aberration

signal, and thus they were generally treated as interference and removed from the

data. When all blinks and other artifacts (with their associated transient behaviour)

are removed from aberration signals, there is a significant loss of data from the total

number of samples obtained with the sensor. In a later study (See Section 4.3) involv-

ing 9 young, healthy subjects, where 8,000 data samples were obtained over a time of

46.24 s, we found that approximately 12.5% of the samples were lost on average after

the removal of artifacts.
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For analysis purposes, it is often considered undesirable to have missing data points

in a time series or a signal. This is because discontinuities or intermittencies cause

problems for some analysis techniques (for example Fourier analysis). This problem

can be alleviated by using interpolation to replace the missing samples [102–104]. A

typical method of achieving interpolation is to assume the missing values are zero (or

some other constant level), and calculate the Fourier transform. The frequency do-

main signal is then band-limited according to an arbitrary limit. The inverse Fourier

transform is then computed, giving the interpolated signal. This method is not ideal,

as the interpolated values do not provide any new information about the dynamics

of aberrations, and in fact introduce false information. When the number of miss-

ing points to be interpolated is very large, interpolation can become unreliable and

inconsistent. It is also possible to remove discontinuities through the use of digital

filtering [16], though this again becomes problematic when a large amount of data is

missing. For this reason, the use of interpolation for aberration and other signals was

avoided whenever possible throughout the project.

3.3 Results

Figure 3.4 shows the time-evolution of several Zernike coefficients for subject CML

(a myope). The sensor measurements were recorded from the subject’s dominant

eye (in this case, the right eye) under partial cycloplegia2, with the subject viewing

a target at his far point. Data was collected over 40 s, with an active pupil diameter

of 5.4 mm. The sampling frequency was 100 Hz, giving a total of 4,000 samples per

trial. As expected, the defocus term had the greatest magnitude, but there were some

contributions from astigmatism, coma, spherical aberration, and other higher-order

terms. Note that though the spherical aberration term as illustrated in Figure 3.4 is

positive, we observed a negative shift as the fixation target was moved towards the

near point. Significant shifts in accommodation were also observed. This is in good

agreement with previous studies [28].

2We use the term “partial cycloplegia”, as the cycloplegic effect was introduced using 1% Tropi-
camide. However, the cycloplegic effect is not total and only lasts for approximately 30 minutes after
insertion. Cyclopentolate is a more effective drug for inducing cycloplegia, but this was not used as it
has a significantly prolonged effect on the subject [105].
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Figure 3.4: Dynamics of selected Zernike aberrations for subject CML. The data was
acquired over an active pupil of 5.4 mm, with a frame rate of 100 Hz. 4,000 data
samples were taken in total. Spurious data points related to blinks were manually
removed.

3.4 Analysis

3.4.1 Spectral Analysis

Figure 3.5 shows PSD estimates (via the Lomb-Scargle periodogram) for the dynamics

of Zernike aberrations. The subject was CML, measured under the same conditions

as in Figure 3.4. The traces shown are the average of 5 separate measurements. Mea-

surable power is found right up to the Nyquist frequency of 50 Hz, at which point the

noise of the system is still 75 times below the measured signal level [91].

Previous authors have established that the temporal dynamics of ocular aberrations

are non-stationary [15, 16]. It is therefore appropriate to accompany any frequency-

domain analysis with time-frequency analysis to give us information about how the

frequency content is varying over time. Figure 3.6 shows a spectrogram of Zernike

astigmatism (±45o) for subject CML (the same trial that was shown in Figure 3.4).

The spectrogram was evaluated at 1,000 uniformly spaced frequencies from 0.005 Hz

to 5 Hz using the Goertzel algorithm [106]. A Hamming window of length 1,600

samples was chosen, with 95% overlap. We already know from the PSD estimate that

the spectral power is dominated by low frequencies (< 2 Hz), but the spectrogram
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Figure 3.5: Periodograms of selected Zernike aberrations for subject CML.

shows us that this low frequency content is modulated in the < 0.5Hz range over the

40 s trial. A peak at approximately 1 Hz is also evident, which also varies in frequency.

This peak is likely to be related to cardiopulmonary activity [27, 31], but we did not

independently verify this with measurements of heart-rate or breathing-rate. We will

discuss this issue in further detail with regards to accommodation, in Chapter 4. The

ZAM distribution of Figure 3.7 gives a similar picture of the time-frequency content,

but with higher resolution. The ZAM distribution was computed in MATLAB using

the Time-Frequency Toolbox of Auger et al. [107]. The ZAM distribution plot gives

the advantage of allowing us to see the time-frequency content over the full 40 s trial;

this is not possible with the spectrogram due to the sliding window function. Note

that the colour scaling in both time-frequency representations is relative, and so we

are looking for concentrations of energy in the signal rather than absolute measures.

For all the time-frequency plots, interpolation in the original signal had to be used,

as both the spectrogram and Wigner-Ville based methods like the ZAM distribution

are implemented using the fast Fourier transform and therefore do not readily admit

non-uniformly sampled data.
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Figure 3.6: Spectrogram of Zernike astigmatism for subject CML.
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Figure 3.7: ZAM distribution of Zernike astigmatism for subject CML. Improved res-
olution is achieved using this Wigner-Ville based approach, when compared to the
STFT based approach of the spectrogram.

3.4.2 Statistical Characteristics

The PDF and CDF are among the first statistical properties that one tends to examine

when dealing with stochastic processes. However, because we are dealing with non-

stationary processes, the PDF is not invariant to time as in Eq. 2.9. Therefore, we look

to other properties to characterise the statistical nature of our measured data. From

Figure 3.4, we can see that the estimated PSD of the aberrations roughly follows a

straight line in the region below 10 Hz, when viewed on a doubly logarithmic plot.

Using the Hill Estimator (which we will discuss in detail in Chapter 5), we estimated

that the slope of the PSD estimates on the log-log scale typically fell in the region

of −1.2 to −1.5. This agrees with fitting carried out by previous authors [15, 98].

Overall, we can therefore postulate that dynamic aberration measurements exhibit

1/ f behaviour (at least over a limited frequency range), in a style similar to other

physiological processes [80].
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3.5 Conclusions

In Section 1.2, we discussed the influence of the heartbeat on ocular aberrations.

Though we have not addressed this relationship here, it has been well established and

studied through means such as correlation and coherence analysis [18]. It is believed

that the heartbeat dynamics have a significant effect on modulating the aberrations

of the eye, possibly resulting from changes in the eye’s axial length due to the retinal

pulsation. It is interesting to note that heartbeat dynamics have also been shown to

exhibit 1/ f behaviour [82, 108].

The non-stationary nature of the dynamics of ocular aberrations has been established

by previous authors [15, 16]. Kasdin [79] stipulated that for 1/ f -like processes, a

power-law exponent of greater than unity at low frequencies suggests that the un-

derlying process is non-stationary. For all of our aberration measurements with the

subject fixating at the far point, the estimated slope of the PSD on a log-log scale is

greater than unity, which agrees well with the statement that dynamic aberrations are

non-stationary by nature. However, when the subject was actively accommodating

on a target (without cycloplegia), we found that many of the aberrations became more

“stable” in terms of their statistical behaviour. This issue of the accommodative effort

of the subject having an effect on the statistics of measured aberration signals will be

discussed in more detail in the following chapter.
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Dynamics and Statistics of

Ocular Accommodation

Accommodation is the process by which the eye changes its refractive power in order

to bring objects of regard at different distances into focus. As mentioned in Chapter 1,

accommodation is a dynamic process. It can operate as a reflex or be controlled con-

sciously. The dynamics of accommodation in the eye have been the subject of many

studies [27,31,37–40,42,43,101]. This is perhaps partly due to the fact that the accom-

modative mechanism borders on several different fields of study. The behaviour of

the lens and the components of the eye that interact with it (particularly the zonule

and ciliary muscles) are of physiological interest. The advent of modern cataract

surgery has encouraged much new research into these components, to the extent that

some new designs of artificial intraocular lenses are claimed to be capable of func-

tional accommodation [109]. Because accommodation is essentially a closed-loop sys-

tem with sensory input, it has also attracted study from a signals and systems point of

view [110]. In particular, the microfluctuations (i.e., small fluctuations about a steady-

state level) of accommodation have attracted much interest [27,37–44,47,101,111,112].

In this chapter, we aim to characterise the temporal behaviour of ocular accommoda-

tion signals, and in particular the manner in which their statistics vary according to

different levels of accommodative effort. The full body of work described in this chap-

ter, apart from Section 4.5, was conducted in collaboration with Charles Leroux of the
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Applied Optics Group and Dr. Luis Diaz-Santana of City University, London.

4.1 Measurement of Accommodation

Many studies of the dynamics of ocular accommodation have made use of infrared

optometers to track the changes in refractive power of the eye [27,31,37,42,113]. This

technique possessed the advantage of enabling high temporal sampling frequencies

(up to 100 Hz). In contrast, many Shack-Hartmann sensors used for dynamic ocular

wavefront measurements have sampling frequencies of less than 20 Hz. An example

is the Complete Ophthalmic Analysis System (COASTM, Wavefront Sciences Inc.), a

commercial Shack-Hartmann based ocular wavefront sensor with sampling capabil-

ity up to approximately 11.5 Hz [16]. Our aberrometer combines good spatial sam-

pling with temporal sampling of up to 173 Hz, and so is well equipped to measure

accommodation as well as aberration dynamics.

Accommodation Through a Lens

In Chapter 1 we introduced the concepts of the far point and near point of the eye.

These points are different for an eye viewing through an ophthalmic lens than for the

eye alone, as the presence of the lens changes the apparent position of the object being

viewed. The accommodative demand, i.e., the amount of accommodative amplitude

required to focus clearly on an object, is also affected by the introduction of a lens. For

example, a myopic subject will find that wearing corrective negative lenses pushes

their near point away from the eye, while their far point should ideally be placed at

infinity (having previously been located at a finite distance in front of the eye). A

detailed discussion of accommodative demand in the presence of correcting lenses is

given by Atchison [9].

The Accommodation Signal

To analyse the dynamics of ocular accommodation, we need to compute a quantity

from our aberrometer measurements that represents the accommodative response as

it varies over time. This quantity can be derived from the temporal expansion of the

Zernike aberrations given in Eq. 3.8. Because of the balanced nature of Zernike poly-

nomials (as discussed in Section 1.2), the Zernike spherical aberration in fact combines

a spherical aberration (ρ4) term with a defocus (ρ2) term in order to minimise the vari-
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ance of the aberration across the circular exit pupil [22]. If we consider only Zernike

terms up to fourth radial order (i.e., n = 4), we can make use of the relation given

by Thibos et al. [20] to compute the defocus wave aberration, from which we infer

accommodation. We therefore define the accommodation signal A(t) as follows:

A(t) =
4
√

3

r2

(

c0
2(t) −

√
15c0

4(t)
)

(4.1)

where r gives the pupil radius. Thus, the accommodation signal is computed us-

ing the Zernike defocus and Zernike spherical aberration terms of the fourth-order

expansion. Using a higher order Zernike expansion, one could rewrite Eq. 4.1 to in-

clude higher-order terms, such as secondary spherical aberration (c0
6) [114]. We found

that in general, as radial order increased, the amplitude of the Zernike coefficients

tended to decrease. Therefore, Zernike coefficients of higher orders suffer greater im-

pact from noise. In the interests of restricting the noise in the accommodation signal,

it was decided to compute the accommodation signal only from Zernike terms of up

to and including the 4th radial order.

4.2 Context of Study

The main aim of our experiments involving the measurement of accommodation was

to investigate the dependence of microfluctuations of accommodation on the mean

accommodative effort. The traditional approach to achieving variation of the mean

accommodative effort is through variation of the stimulus vergence V = − 1
d , where

d is the distance from the eye to the target in metres. A Badal optical system is often

used to allow the vergence to be adjusted without affecting the angular subtence of

the target itself [27].

Though early work by Campbell et al. included measurements of microfluctuations at

two target vergences [113], the first systematic study of the effects of target vergence

on the properties of the microfluctuations was made by Arnulf and Dupuy [115]. The

results indicated that the amplitude of microfluctuations are increased as the target

vergence is increased. A study by Denieul [42] made use of an infra-red optome-

ter to measure accommodation microfluctuations at several different stimulation ver-

gences, noting the effects of the vergence on the mean accommodative response, mi-

crofluctuations, and optical quality of the eye. However, only three subjects were

measured, and the spectral analysis only considered the 0-6 Hz range. There appears

to be a general consensus that the RMS amplitude of the microfluctuations increases
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by a factor of approximately 3-4 over the stimulus range −0.5 to −4 D [27]. Miege and

Denieul [38] extended earlier studies by investigating the behaviour of microfluctu-

ations over the full accommodative range. The authors reported that for target ver-

gences closer than −4 D, the amplitude of microfluctuations eventually begins to de-

crease as the subject’s near point is approached. This decrease for very near viewing

was also reported by Stark and Atchison [39].

In this research, we aimed to characterise the temporal statistics of microfluctuations

of accommodation for different levels of accommodative effort, using the custom-

built aberrometer setup shown in Figure 3.2. The goal was to look for consistent

trends from subject to subject, independently of their refractive error, in order to char-

acterise some features of the accommodation signal.

4.3 Experimental Setup and Procedure

As with the dynamic aberration measurements described in Chapter 3, all data was

collected using the custom-built aberrometer design of Charles Leroux (see Figure 3.2).

Since this study was concerned specifically with accommodative effort, the use of

translation of the fixation arm was prominent in the experimental procedure.

Experiment Subjects

A total of 9 subjects were included in the accommodation study. All subjects were

members of the Applied Optics Group at NUI Galway. The subjects were aged be-

tween 26 and 38 years, with a mean age of 29.9 years and standard deviation of

3.4 years. The mean sphere correction required by the subjects was −0.31 D, with

a standard deviation of 0.35 D. The mean cylinder correction required by each sub-

ject was −0.06 D, with a standard deviation of 0.41 D. None of the subjects had any

known relevant ocular pathology. Subject DDB had undergone photorefractive kera-

tectomy (PRK) surgery several years previously. Having been myopic before surgery,

subject DDB was now slightly hypermetropic. All other eyes were either emmetropic

or slightly myopic. At 38 years of age, subject EL could have been classified as an

early presbyope, however the subject was found to have accommodative amplitude

that was more than sufficient for the required task and so was admitted to the study.
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Experimental Procedure

The general measurement approach we adopted was similar to that of Denieul [42],

in that we chose to measure accommodation at a number of vergences within the

subject’s accommodative amplitude, from the near point to the far point. Analysis

would then allow us to distinguish between the characteristics of the accommodation

dynamics at different vergences. Our principal results consisted of 4 trials measured

at each of the 4 viewing conditions, for all 9 subjects. Performing 4 trials at each

viewing condition enabled us to monitor the consistency of the subjects’ performance,

as well as to perform averaging to reduce the impact of noise on our results.

All experiment trials were carried out with a retinal illuminance in the photopic

regime (80 cd m−2). Data was collected from the subject’s dominant eye. The non-

dominant eye of the subject was covered with an eye patch, and the subject was

aligned using a bite-bar for stabilisation. Each measurement trial provided 8,000 data

points. The temporal sampling frequency was 173 Hz, meaning each trial was ap-

proximately 46.24 s in duration. An active pupil diameter of 3.9 mm was used for all

measurements; all subjects were required to have a natural pupil size of greater than

this diameter for all viewing conditions. The spatial sampling across the pupil was

250 µm. This corresponded to 15 active lenslets across the diameter of the pupil.

Some subjects reported significant distortion of the retinal image when focusing at the

near point. We attributed this at least in part to an increase in astigmatism associated

with increased accommodative effort [28]. If required, a cylindrical ophthalmic lens

was introduced in the fixation arm (plane P, conjugated with the pupil of the eye)

to partially correct for the subject’s astigmatism. The lens was chosen according to

the subject’s cylindrical refractive error, and was oriented by the subject according to

their own subjective assessment of best image quality.

Throughout the course of the experiments, we performed measurements at four dis-

tinct viewing conditions that were of the greatest interest. We refer to these in our

results and analysis as follows:

• Far Point: The far position was first found by the subject by manually translat-

ing the target away from the Badal lens LB of the fixation arm. The subject was

instructed was to find a comfortable far viewing position.

• Intermediate Point: Starting with the far viewing position, we then introduced

a −4 D ophthalmic lens in the plane Π. This defined the intermediate point for

the trials, which corresponded to comparable accommodative demand for all
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subjects (4 D from the subject’s far point).

• Near Point: The subject’s near point was found by directing the subject to trans-

late the target towards LB. We encouraged the subject to find the limit of his/her

accommodative range.

• Partial Cycloplegia: This used the same fixation arm position for the far point,

but in this case 1 % Tropicamide drops were utilised to induce partial cyclople-

gia.

Maintaining fixation at the near point for the full duration of the trials proved to

be difficult for some subjects. The matter was further complicated by the differing

accommodative amplitudes of all the subjects. Preliminary measurements were taken

to make sure that the accommodative response at the near point of viewing was at

least 1 D greater than for the intermediate point. If the subject was not capable of at

least this level of accommodation, they were excluded from the study. For this reason,

2 subjects were excluded from the original group of 11 subjects. Given that the pupil

tends to constrict noticeably when viewing at the near point, we monitored the pupil

constriction using the pupil imaging camera during measurements to ensure that this

effect was maintained during near viewing. If a significant loss in accommodative

effort occurred during the trial, or if the subject reported a sudden drop in the retinal

image quality, the trial was discarded and repeated.

4.4 Results

Accommodation Signal

From the aberrometer measurements (in the form of Shack-Hartmann CCD frames),

we applied the methods described in Section 3.1 to obtain the local wavefront slopes

and subsequently the Zernike coefficient values. This gave us a temporal reconstruc-

tion of the wavefront aberration as described in Eq. 3.8. The accommodation signals

contained blinks at the same times as found in the aberrometer measurements. We

removed spurious data points corresponding to instances of blinks, as described in

Section 3.2.3. The Zernike coefficient time series were examined for discontinuous or

impulsive behaviour, and then the corresponding CCD frames were checked to de-

termine whether or not there was valid input to the sensor. This ensured that analysis

was performed only on “clean” signals. A 4th radial order Zernike reconstruction was

used in this study. This enabled us to compute the accommodation signal as given in
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Figure 4.1: Accommodation signals for subject ED at the 4 viewing conditions. Dur-
ing the near point measurement, the subject was unable to fully hold fixation from
approximately t = 19 s onwards.

Eq. 4.1. Figure 4.1 shows typical accommodation signal measurements recorded for

subject ED at each of the 4 viewing conditions. For the near point (red) trace, the am-

plitude of fluctuations of accommodation are initially noticeably reduced compared

to at the intermediate point (green). However, for t > 19 s, the difficulty in main-

taining this level of effort can be observed. A small relaxation of the accommodative

effort leads to increased amplitude of the fluctuations. This is in good agreement with

the results of Denieul [42]. For the remainder of the trial, the near point signal exhib-

ited the type of behaviour that we typically would observe at the intermediate point.

Changes of behaviour like this within a single trial at the near point were observed

quite often, and we consider them to be representative of a separate phenomenon. In

general, if a subject was unable to maintain fixation at the near point for the duration

of a trial, the trial was repeated. We suggest that the measurement of accommodation

in subjects at the near limit of their accommodative range might be better achieved

through open view conditions.

Mean Accommodative Effort

Figure 4.2 compares the mean accommodative effort of the 9 subjects at the 3 natural

(i.e., without cycloplegia) viewing conditions. The effort performed by all subjects

at the far point was on average 0.6 ± 0.4 D (magenta bars), and corresponds to the

accommodation lead usually observed for a relaxed accommodative state. At inter-

mediate viewing, the mean effort is 4.1 ± 0.6 D (green). The effort at near viewing

corresponds to the maximum accommodative effort that the subject is able to main-

tain consistently, and is on average 5.9 ± 0.8 D (red).
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Figure 4.2: Comparison of the mean accommodative effort of the 9 subjects at the 3
natural viewing conditions.

Mean of RMS Fluctuations

A simple approach to quantifying the microfluctuations of accommodation for each

measurement trial is to compute the root mean square (RMS) fluctuations of the

accommodation signal [38, 39, 42, 43]. This approach does not show much differ-

ence between the intermediate and the near point, as we found mean RMS values of

0.18± 0.09 D (near), 0.22± 0.07 D (intermediate), 0.16± 0.05 D (far), and 0.11± 0.08 D

(partial cycloplegia). The RMS is very sensitive to drifts1 of the signal, and is conse-

quently not adequate to quantify non-stationary signals, such as those observed at

conditions other than the intermediate point. We therefore pursued other methods

to quantify our observations, through spectral analysis and assessing the autocorre-

lation function of the time series increments.

4.5 Analysis

4.5.1 Stationarity

Temporal non-stationarity has been identified as a significant concern in the analy-

sis of aberrometer data [15, 16]. We tested all accommodation measurements for the

presence of non-stationarity. The runs test was chosen because as a non-parametric

method it does not require any knowledge about the nature of the system, unlike

many model-based methods which require an assumption that the data is normally

distributed [57]. As discussed in Section 2.1.2, the runs test can be based on many

1When dealing with other non-stationary physiological signals, such as EEG, it is common to apply
low-pass filtering before analysis in order to remove drifts. We considered drifts to be an important part
of our measured signals that convey useful information, and so we chose not to remove them.
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different sample statistics, e.g., sample mean, sample standard deviation, or mean

square error. We chose the sample mean as the statistic for testing the accommoda-

tion time-series. Though this test does not conclusively prove non-stationarity, it is

a useful indicator, particularly when large amounts of data are available [50]. Alter-

natively, one can often receive strong indications on whether or not a time series is

non-stationary by simply examining the data, and noting the presence of any trends,

discontinuities, transients, or impulsive behaviour. Both the runs test and visual in-

spection approaches were used, and the outcomes are shown in Figure 4.3.

Figure 4.3: Assessing the stationarity of the accommodation measurements.

Given a 99% confidence interval, the runs test detected non-stationarity in 75% of the

measured time series, while visual inspection led to the conclusion that 73% were

non-stationary. There was an overall discrepancy of 16.7 % between the two test-

ing methods. We note that when subjects were fixating at the intermediate point,

only 50% of the measured time series were found to be non-stationary. For the three

most experienced subjects (CML, CEL, and ED), only 1 out of 12 trials contained non-

stationarity.
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As discussed in previous chapters, when dealing non-stationary processes, traditional

methods of analysis such as Fourier analysis are of limited use [16, 50]. Also, the au-

tocorrelation cannot be expressed as the function of a single variable, as in Eq. 2.11.

Many types of commonly observed non-stationary processes are known to have sta-

tionary increments. The increments of a time series can provide information about the

underlying physical process, and are useful in the removal of some non-stationary

trends [53]. We tested the increments of our measured accommodation time series

in the same manner as the raw time series, as seen in Figure 4.3. Given that the in-

crements are generally zero-mean processes, the sample mean was deemed to be an

unsuitable choice of statistic in this case, and so the sample standard deviation was

used instead. The runs test identified only 8 trials ( 5%) that were non-stationary,

while 4 trials ( 3%) were deemed to be non-stationary using visual inspection. The

discrepancy between the two testing methods was 6%. Thus, we conclude that it is

safe to assume that our accommodation measurements were generally non-stationary.

However, non-stationarity was generally not detected in the in the increments series.

4.5.2 Spectral Analysis

Despite the fact that accommodation time-series are in general non-stationary, PSD

analysis has been used in their analysis by many authors [31,37,39,42,43,101]. In Sec-

tion 2.2.3 we noted that the PSD can be of limited use when applied to non-stationary

processes. It has been suggested however that estimates of the PSD, even for non-

stationary processes, are in many cases a legitimate basis for formulating system mod-

els for stochastic processes [79]. In practice, statistical characteristics of a measured

signal will almost always vary over the duration of interest, at least to some degree.

If these variations are minor, then we can assume that measures or transformations

computed over the entire duration of the signal still carry useful information. In such

situations, it may be more useful to employ Fourier methods and other stationary

techniques to analyse the signal, even though it technically does not completely sat-

isfy the conditions for strict or wide-sense stationarity. Reasons include the relative

ease and intuitiveness of frequency-domain analysis, compared to alternatives such

as time-frequency analysis. Such a simplification can sometimes be more easily jus-

tified by analysing only signals of short duration, over which an assumption of sta-

tionarity may be more plausible. Ultimately, the decision regarding which types of

analysis techniques are appropriate for a particular type of signal may not be clear,

and requires individual judgement. In this section, we will demonstrate analysis with

and without the assumption of stationarity. This dual approach to the treatment of
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ocular dynamics has also been adopted by other researchers [16, 116]. We balance

our PSD analysis by also performing time-frequency analysis on the accommodation

signals, which gives us a description of the spectral power as a function of both fre-

quency and time, as described in Section 2.2.3.

Estimation of Power Spectral Density

We used the Lomb-Scargle periodogram to estimate the PSD of accommodation sig-

nals. This was deemed to be the most suitable method of PSD estimation due to its

particular properties, which allow it to be applied to time series with missing data

points. All of our time series were afflicted by missing data points, due to blinks. The

flexibility in frequency resolution was also a useful feature. Given that 4 measure-

ment trials were taken for each subject at each viewing condition, we made use of

periodogram averaging to reduce noise and aid in the interpretation of results.

Periodograms were obtained for each trial. The periodograms were estimated from

trials with approximately 27% missing data points on average. The spectra were eval-

uated at 3,000 uniformly spaced frequencies in the range 0.01-86.5 Hz, however we

were most interested in the 0.01-10 Hz region due to the fact that PSD of the accom-

modative response under all the viewing conditions tends to converge at values of 10

Hz and above [4]. For this reason, we also computed periodograms evaluated at 1,000

uniformly spaced frequencies in the 0.01-10 Hz range. Using the Lomb-Scargle peri-

odogram, this flexibility in frequency resolution could be achieved without having to

filter or sub-sample our data. In least-squares spectral analysis, the number of invalid

points in the time series does not impact on the resolution, because the spectrum is

evaluated at arbitrary frequencies [66].

The fitting of a linear slope to the periodograms can be performed using a linear re-

gression algorithm or the Hill Estimator, as discussed in Section 2.3. However, given

the nature of our data, a bilinear fit was more appropriate. A bilinear fit can be per-

formed by adopting a regression approach and imposing a constraint on the regres-

sion function [117]. For example, one can fit the line f (x) = mx + c to a curve, with

the constraint f (1) = d, where m is the slope and c and d are constant values. Thus,

the fitted line is constrained to pass through a specified point.

We performed bilinear fits to each of the computed PSD estimates. The starting point

of the second line was in each case constrained to coincide with the last point of

the first line. This point is then regarded as the breaking point, with its x-intercept

deemed the breaking frequency fbr. In order to estimate the optimal value of fbr, we
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performed an iterative process whereby each point between 0.2 Hz and 2.5 Hz was

tested as the breaking frequency. We then sought the frequency value for which the

RMS fitting error was at a minimum. This value identified our estimate of the optimal

breaking frequency f̂opt.

Figure 4.4 shows periodograms for 3 subjects on a log-log scale, for frequencies up

to 10 Hz. We computed slope fits m1 and m2 for two different frequency regions

Figure 4.4: Periodograms of the accommodative response for 3 subjects at each of the
viewing conditions with fitted slopes. The values m1 and m2 denote the fitted slopes
for the lower and higher frequency regions respectively.

(i) Below 2 Hz; (ii) 2-10 Hz. Each trace was computed from 4 trials and averaged.

Table 4.1 shows the estimated optimal breaking frequency values for all nine sub-

jects at each of the viewing conditions. Table 4.2 shows the fitted slope values for all

nine subjects at each of the viewing conditions, along with the average value across

subjects. Figure 4.5 shows the periodogram averaged across 8 subjects, with the 4

viewing conditions overlaid on a single plot. Subject DDB was not taken into account

in the averaging process, because the periodograms computed for this subject were
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Table 4.1: Optimal breaking frequency for the 9 subjects.

Subject f̂opt,near (Hz) f̂opt,int (Hz) f̂opt, f ar (Hz) f̂opt,cyc (Hz)

CML 2.38 2.50 2.50 1.90

CEL 0.78 1.87 0.90 2.02

ED 1.26 1.89 1.07 1.09

DDB 0.65 1.72 1.94 2.50

EDL 0.51 1.20 0.83 1.00

MS 1.02 2.10 1.03 1.33

MN 1.66 2.20 1.73 2.50

AOB 1.84 2.27 2.17 2.34

EL 2.28 2.47 1.05 1.11

Table 4.2: Fitted slopes for the 9 subjects.

Subject m1,near m2,near m1,int m2,int m1, f ar m2, f ar m1,cyc m2,cyc

CML -1.15 -2.13 -0.73 -4.03 -1.44 -1.68 -1.68 -1.56

CEL -0.98 -2.30 -0.89 -3.89 -1.17 -2.07 -1.16 -2.10

ED -0.90 -2.46 -0.47 -4.08 -1.25 -1.89 -0.88 -1.88

DDB -0.23 -1.85 -1.61 -2.50 -1.18 -2.51 -1.43 -1.83

EDL -0.55 -1.85 -0.48 -3.99 -1.42 -2.39 -1.06 -1.89

MS -1.09 -2.21 -1.07 -3.57 -1.23 -2.22 -0.61 -1.92

MN -1.59 -2.27 -1.42 -3.5 -1.71 -2.30 -1.33 -2.84

AOB -1.24 -2.78 -0.96 -4.14 -1.15 -3.22 -0.96 -3.02

EL -1.09 -2.05 -1.26 -3.43 -1.52 -1.88 -1.06 -1.69

Average -0.98 -2.21 -0.99 -3.68 -1.34 -2.24 -1.13 -2.08
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Figure 4.5: Averaged periodograms of the accommodation signal for different ac-
commodative conditions. Each trace represents the average estimated spectral power
across 8 subjects.

substantially different to those computed for all the other subjects. The reasons for

this are unknown, but may be related to the fact that the subject had previously un-

dergone PRK surgery. PRK changes the bio-mechanical properties of the cornea and

can affect tear-film dynamics. It is possible that the differences we observed in the

periodograms may be related to the surgery.

Time-Frequency Analysis

We performed time-frequency analysis on the accommodation signals, in order to

gain more detailed information about their spectral composition and the extent of the

non-stationarity involved. Discontinuities cause problems for time-frequency distri-

butions, and so missing data points due to blinks were replaced by interpolated data

(using the Fourier transform method of interpolation [102–104]). Figure 4.6 shows the

spectrogram via the short-time Fourier transform (as described by Eq. 2.38) for subject

ED from a measurement at the intermediate point. The time domain and frequency
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Figure 4.6: Time-frequency analysis using the Short-Time Fourier Transform for Sub-
ject ED at the intermediate point. Multiple components can be seen in the 0-5 Hz
range. Some appear to vary in frequency, while others suggest the presence of har-
monic distortion.
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domain (via the Lomb-Scargle periodogram) are also shown. The spectrogram was

evaluated at 1,000 uniformly spaced frequencies from 0.005 Hz to 5 Hz using the Go-

ertzel algorithm [106]. A Hamming window of length 1,600 (in samples) was chosen,

with 95% overlap. Figure 4.7 gives a time-frequency representation of the same signal

as in Figure 4.6, but in this case the ZAM distribution was used.

Figure 4.7: Time-frequency analysis using the ZAM distribution for Subject ED at the
Intermediate Point. Improved resolution is achieved using the Wigner-Ville based
approach as opposed to the STFT based spectrogram.

From the spectrogram and periodogram plots of Figure 4.6, it can be seen that the

frequency content of the signal is dominated by components below 2 Hz. The signal

appears to be multi-component, containing both components that vary in frequency

and those that remain constant. There is also evidence of harmonic distortion, as well

as some amplitude modulation. There appears to be an abundance of activity in the

1-1.5 Hz region. This manifests itself as a distinct peak in the periodogram, but in the

spectrogram it appears that there may be more than one component involved around

the 30-35 s region, while the activity appears to be significantly weaker at other times.

All these observations serve to illustrate how time-frequency analysis can give more

information than a periodogram alone.
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Figure 4.7 illustrates the point that the improvement in resolution obtained through

using the ZAM distribution is significant (the advantages of this method were dis-

cussed in detail in Section 2.2.3). The time-frequency representation is noticeably

improved compared to that obtained using the STFT. Note that the colour scaling

is relative, and so we are looking at concentrations of energy in the signal, rather than

absolute measures. The finer detail seen using this plot would seem to indicate that

a steady component of approximately 1.2 Hz was present in the signal. Given that

previous studies have highlighted the presence of heartbeat peaks in the frequency

content of accommodation signals [18, 31], and also that the subject’s rest heart-rate

was approximately 70 beats/minute, we conclude that the 1.2 Hz component is likely

to be related to the cardiopulmonary influence.

Figure 4.8 shows the spectrogram for subject ED when measured at the far point.

The time trace is visibly affected by slow trends and intermittent behaviour. The pe-

Figure 4.8: Time-frequency analysis using the Short-Time Fourier Transform for Sub-
ject ED at the far point. Low-frequency drifts dominate the signal.

riodogram and STFT are consequently dominated by low-frequency content. Some
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intermittent behaviour occurring at around 29 s (possibly due to eye movement) pro-

duces a burst of high frequency on the STFT. This effect could not easily be identified

using the periodogram alone.

4.5.3 Statistical Characteristics

Increments of the Accommodation Signal

Figure 4.9 shows an accommodation signal measured at each of the four viewing

conditions for subject AOB. As described previously, taking the increments of accom-

Figure 4.9: Accommodation signals and their corresponding increments for subject
AOB, at each of the 4 viewing conditions. A close-up of the increments (showing a
period of 2 seconds) is also shown (right).

modation signals typically yields a stationary process. However, it also has the effect

of amplifying the higher frequency components in the signal, including noise. The

structure of the increments signal differs from the other viewing conditions, as can be

seen in the close-up traces. For the near point, far point, and partial cycloplegia cases,

positive increments tend to be succeeded by negative ones and vice-versa. This is an

indication that there is no significant correlation in the signal, i.e., it is reminiscent

of white noise. For the intermediate case, there is a clear structure to the increments

signal, which suggests that it is not simply a noise process. This effect was seen to

some degree for all subjects, but was most apparent for the three most experienced

76



Chapter 4. Dynamics and Statistics of Ocular Accommodation

subjects (CML, CEL, and ED).

PDF of Increments

We also looked to examine the probability density function (PDF) of the increments

in Zernike defocus. We chose to examine the Zernike defocus signal Z0
2(t) rather than

the accommodation signal A(t) in this respect, due to the fact that Zernike spherical

aberration Z0
4 is typically much smaller in amplitude than Zernike defocus, and so is

more adversely affected by noise. Eq. 4.1 shows that Z0
4 is increased in the accommo-

dation signal by a factor of
√

15. Since we were aiming to get a general idea of the

shape of the PDF for increments in accommodation, we choose in this case to neglect

the spherical term and minimise the effect of noise on the PDF. Figure 4.10 shows

normalised PDFs of the increments in Zernike defocus for three subjects at each of

the four viewing conditions on a semi-logarithmic scale. Each PDF was computed

Figure 4.10: PDFs of the increments of Zernike defocus for 3 subjects, at each of the
four viewing conditions. A Gaussian PDF with zero mean and unit variance is also
shown as a reference, to illustrate that the measured PDFs are non-Gaussian in nature.

using the increments of data from 4 trials collected at that particular viewing condi-

tion. A Gaussian PDF with zero mean and unit variance is also shown as a reference.

We noted that the PDFs in all cases appeared to be non-Gaussian, exhibiting signs of

heavy tails and skewness. Since this effect was noted in all nine subjects included in

the study, we attempted to use averaging across subjects to identify any consistent

differences between viewing conditions in terms of the shape of the PDF. Figure 4.11

shows the averaged PDF for the nine subjects. The heavy tails are represented clearly,

and appear to be significantly more pronounced for near viewing than for the other

viewing conditions. Heavy-tailed PDFs suggest that there are many large deviations

in the series in question [118]. Thus, our results suggest that the increments of Zernike

defocus exhibit more large deviations for near viewing. This can be confirmed by vi-
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Figure 4.11: PDF of Increments of Zernike defocus, averaged over 9 subjects, at each
of the four viewing conditions. A Gaussian PDF with zero mean and unit variance is
also shown as a reference, to illustrate that the measured PDFs are non-Gaussian in
nature.
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sually examining the increments of the Zernike defocus directly, as can be seen in

Figure 4.12. There is a relative abundance of large deviations at the near point com-

Figure 4.12: Zernike defocus signals and their corresponding increments for subject
AOB. The difference in the amount of large deviations observed in the increments
series is apparent.

pared to the other viewing conditions. Many of these deviations exceed the standard

deviation and would be unlikely to be exhibited by a linear Gaussian process. Large

deviations of this kind have been observed in systems with intermittent behaviour,

and they are often associated with heavy-tailed2 processes [118, 119].

Autocorrelation Function of the Increments in Accommodation

We computed the autocorrelation function (ACF) of the increments in our measured

signals. In general, the ACF of a signal may be used as a quantitative measure of the

memory in the system from which the signal arose [50]. In this study, we computed

estimates of the ACF over blocks of 500 samples. This enabled us to obtain multi-

ple estimates from a single trial. Any blocks containing missing data points (due to

blinks) were discarded. These estimates were then averaged to give a single ACF

estimate for each subject at each viewing condition.

2“Heavy-tailed” refers to a class of probability density functions whose tail regions are not exponen-
tially bounded. The Lévy-skew alpha-stable distribution is an example of this type of PDF [78].
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As described earlier, the Zernike spherical aberration term in Eq. 4.1 can be detrimen-

tal if one wishes to minimise noise for analysis purposes. Figure 4.13 shows a com-

parison of calculating the autocorrelation function of the increments of the accom-

modation signal, the increments of Zernike defocus, and the increments of Zernike

spherical aberration. Again, we concentrate our analysis on increments in defocus
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Figure 4.13: Illustration of the effects of noise on the autocorrelation of the increments.
The spherical aberration term Z0

4 is more greatly affected by noise than the Zernike
defocus Z0

2 term.

rather than the accommodation signal A(t). Figure 4.14 shows the normalised ACF

of increments of Zernike defocus Z0
2 for 3 subjects, at each of the 4 viewing conditions.

Each plot is averaged over 4 separate trials.

4.6 Conclusions

In this chapter, we have presented measurements of ocular accommodative response,

consisting of a large amount of data measured for 9 subjects. We found good repeata-

bility over separate trials, and good consistency in our results from subject to subject
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in terms of mean accommodative effort.

Accommodation Signal for Intermediate Viewing

The difference in the shape of the periodogram (Figure 4.4) for the different viewing

conditions is still clear after averaging (Figure 4.5). The periodogram for near view-

ing is comparable in shape to the periodogram for the far viewing condition. At the

intermediate point, we computed a systematically more negative slope of the peri-

odogram in the higher frequency region, with an average slope of around −3.68 (on

a doubly logarithmic scale). This observation is in agreement with previous stud-

ies involving PSD estimates of temporal variations in Zernike defocus [15] and RMS

wavefront error [4].

At the far point (and with partial cycloplegia), the values of m1 are more similar to

the values of m2, with an average value of m1 = −1.34. This is comparable to that

obtained for the dynamic aberration measurements in Chapter 3. It is interesting

to note that the estimated PSD at the near point is to some degree a mixture of the

estimated PSD obtained for the far point and the intermediate point, with a slope of

approximately −2 in the higher frequency range. This similarity is illustrated by the

averaged PSD estimates (Figure 4.5).

At the intermediate point, we computed a systematically more negative slope of the

periodogram in the higher frequency slope range, with an average value of m2 =

−3.68. We found average slope values of m1 = −1.34 and m2 = −2.24 for the far

point, and m1 = −1.13 and m2 = −2.08 for the partial cycloplegia condition. These

slope values are comparable to those obtained in other studies [4, 15, 99].

Looking at the periodogram on a log-log plot emphasises the global shape of the PSD,

rather than finer details like peaks associated with the heartbeat and breathing. Such

peaks are known to vary in frequency over short periods of time and can be better

observed using linear periodogram plots or time-frequency analysis [16].

Non-Stationarity of Temporal Accommodation Signals

The non-stationary behaviour of accommodation signals was illustrated both by the

non-parametric test results of Figure 4.3 and the time-frequency analysis (Figures 4.6,

4.7, and 4.8). The time-frequency results also illustrate that the accommodation sig-

nals contain multiple components and display non-linear characteristics, such as har-

monic distortion and harmonic amplitude modulation.
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To quantify the stability of the accommodative signal, some previous authors referred

to the amplitude of the low frequency component of the estimated PSD [39,40,44,111].

As mentioned in Chapter 3, for 1/ f -like processes, a power-law exponent in the PSD

(on a log-log scale) of greater than unity at low frequencies suggests that the underly-

ing process is non-stationary. Thus, if a process is statistically stable/stationary, one

would expect this slope to be less than unity. This fits well with our estimated slopes

of the PSD of the accommodation signal for low frequencies (i.e., m1), which are be-

low or just above unity for most of the 9 subjects. For the three most experienced

subjects (CML, CEL, and ED), the value of m1 is indeed below unity. This suggests

that these subjects have a more stable accommodative response at the intermediate

point, and this assertion is backed up by the non-parametric tests of Section 4.5.1. It

is possible that this improved stability is due to the subjects becoming more adept at

the visual task with experience.

As illustrated by Figure 4.1, occasionally a subject struggled to maintain steady-state

accommodation at the near limit of their accommodative range (e.g., due to fatigue).

This contributes to increased negative slope of the periodogram. As stated previously,

subject DDB was found to differ greatly from the other subjects, in that the slope of the

periodogram was found to be “flatter” for the near point as well as for the intermedi-

ate point. Drifts of the accommodative signal contribute to the < 1 Hz region of the

estimated PSD. The relative absence of these components for intermediate viewing

suggests that the accommodation signal could be stationary in this case.

Scaling and Long-Term Memory

The fact that there is a piecewise linear relationship between spectral power and fre-

quency on a logarithmic scale (i.e., a 1/ f -type relationship) suggests that the signals

may have a degree of self-affinity [50,78,79]. Self-affinity and self-similarity have been

reported in the temporal fluctuations of many biological processes, including heart-

beat [108], blood pressure [81], and balancing [120]. Many of these diverse physio-

logical processes exhibit power-law behavior in the PSD. This implies that the current

value of the signal depends not only on its most recent value but also with its long-

term history in a scale-invariant, fractal manner [80]. We observed different slopes in

the periodogram depending on the mean accommodative response, in a manner that

was consistent from subject to subject. We conclude that the scaling of the microfluc-

tuations is related to the accommodative state of the eye, and is significantly altered

when the accommodative system is in its active range, i.e., between the near and far

point.
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The difference between intermediate viewing and the other viewing conditions can

also be seen in the ACF of the increments in accommodative response, as illustrated

in Figure 4.14. Slower decay in the ACF suggests longer lasting correlation of the

increments of the process for intermediate viewing. This suggests that there is some

memory in the process in the case of intermediate viewing [50], whereas for the other

viewing conditions the ACF more closely resembles that of a random walk. It ap-

pears from Figure 4.13 that the noise on the measured accommodative signal has an

important impact on the ACF.

The ACF of the increments of the Zernike defocus Z0
2 shows a smoother profile and

a longer lasting decay than the full accommodative signal, because the noise on the

measured spherical aberration Z0
4 is multiplied by a factor of

√
15 in Equation 4.1. For

Z0
2 , we note significant ACF values at lags below 0.1 s (as shown by Figure 4.14), while

Figure 4.5 indicates that the estimated PSD of the accommodative response under all

the viewing conditions tends to converge at values of 10 Hz and above. It is possible

that the memory in the system could play a role in stabilising the accommodative

response when the subject is fixating upon a target at their intermediate point.
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Chapter 5

Modelling of Dynamic

Ocular Aberrations and

Accommodation

In Chapter 2, we introduced the topic of signal modelling and discussed some of the

general motivations for its use. There are several different motivations behind devel-

oping models of ocular aberration and accommodation signals, some of which have

been discussed by previous authors. To aid the continued advancements in refractive

surgery, it is important to address the fluctuations in the aberrations of the eye [84].

Accurate models of the dynamics could assist in making estimates of these aberra-

tions and the corresponding optimal refractive correction. Such models would also

be of interest in the study of the relationship between dynamics and visual perfor-

mance [4], the development of customised contact lenses [121], and in the design of

ocular adaptive optics systems with real-time correction [122].

Signal models of physiological processes are commonplace [50]; however there has

been very little research regarding models of dynamic ocular aberrations other than

defocus. Iskander et al. [84] proposed a methodology for modelling the dynamics of

higher-order ocular aberrations using a parametric, amplitude-modulated, frequency-

modulated (AM-FM) approach. This study focused in particular on the spherical
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aberration and coma Zernike coefficients. Galetskiy et al. [122] demonstrated a po-

tential application of a model of dynamic aberrations, by employing a deformable

mirror to generate aberrations in real time. This approach was dedicated to repro-

ducing aberrations from real measurements; however such a system could also be

readily driven by aberration data simulated from a model. A model incorporating re-

alistic spatial and temporal information could be utilised in this way, e.g. for testing

of aberrometers, customised contact lenses, or other ophthalmic devices.

A model of the microfluctuations of accommodation has potential use in the study of

the perceptual detectability of accommodation microfluctuations. A study by Winn et

al. [48] utilised measurements of accommodation microfluctuations to drive a Badal

stimulus optometer, while paralysing the subject’s accommodation. A stimulus was

then presented to the subject. Subjective tests were then performed to determine the

perceptual threshold of the accommodation signal, with the authors concluding that

the accommodation signal is capable of providing information to the accommodative

control system, at least under certain conditions. However, this study included only

two subjects and was performed under a limited range of experimental conditions

with a simple test of perception. We believe there is scope for further study in this

area, and that such studies could be assisted by a dynamic model of accommoda-

tion. This would give a standard framework for studies of accommodation dynamics

without requiring large databases of measurements.

The association between sustained near accommodative work and the development

of myopia, particularly late-onset myopia1 (LOM), has been well documented [123,

124]. Culhane and Winn [123] showed that LOM subjects exhibit significantly altered

dynamic accommodative response to changes in stimulus after sustained near work.

Specifically, response times after 3 minutes of sustained near vision were longer than

for other groups when the stimulus was changed from near to far. Thus, there is po-

tential for gaining information about subjects’ refractive error development based on

the dynamics of their accommodative response. This relationship between dynamic

accommodation and myopia warrants more study in the form of signal processing

and feature extraction, and it is felt that signal modelling could play a useful role.

In this chapter, we discuss signal modelling in the context of ocular aberrations and

accommodation. We discuss different modelling strategies, and present a detailed

description of a frequency-domain power-law based model. We present results of

simulations based on this modelling approach, for both aberration and accommoda-

1Late-onset myopia is the term applied to be myopia that emerges later in life (e.g. after 15 years of
age). It is generally assumed to be environmental in origin rather than hereditary [123].
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tion signals. Finally, we present a discussion of possible modifications to the model,

and some potential applications.

5.1 ARIMA and Other Parametric Methods

In our initial approach to modelling of dynamic ocular aberration signals, we used

ARIMA models, which we described in detail in Section 2.4. We were encouraged to

use this approach by several factors:

• ARMA and ARIMA models are well-established and understood tools for mod-

elling and gaining understanding of a wide variety of signals [53], and have

been widely used in biomedical signal research [58].

• ARIMA models lend themselves easily to non-stationary processes where the

non-stationarity can be removed through differencing. As discussed in Chapter

4, a single order of differencing (or none at all) was sufficient for almost all of

our measured signals in order to render them stationary.

• The parameters of ARIMA models can easily be estimated using a wide variety

of methods, including the Yule-Walker method discussed in Section 2.4. The

resultant models can provide considerable flexibility if the model order is suffi-

ciently high.

• Simulation is easily performed using an ARMA model [125]. Simulation is car-

ried out by seeding Eq. 2.70 with a white noise process ν(n). For the ARIMA

case, the “undifferenced” simulated sequence x(n) is obtained from z(n) by tak-

ing partial sums.

The ARMA/ARIMA approach also has several major drawbacks. These methods at-

tempt to model stochastic signals by approximating the one-dimensional autocorrela-

tion properties of the signal. There is a problem with this ideology when considering

the dynamics of ocular aberrations, as the autocorrelation is not expressible as a func-

tion of a single variable. On the other hand, given the notion that stationarity can be

considered to be a relative term when dealing with non-deterministic processes, and

the prevalence of ARIMA models in biomedical signal literature, this was not seen as

a decisive argument against their use.

Visual inspection of the results of our ARIMA modelling and simulation indicated at

an early stage that the approach suffered from significant limitations. One of the key
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problems of this approach with regard to modelling ocular aberration dynamics is the

long-term memory associated with these processes (as discussed in Chapters 3 and

4). In particular, a relatively fast decrease in autocorrelation at short lags combined

with a slow decline at longer lags is difficult to model with an ARIMA approach. This

difficulty is explained in Bruce Ch. 10 [50], in pole-zero model terms2. At longer lags,

the autocorrelation function of an ARMA process is dominated by the pole closest to

the unit circle. However, this pole will lead to slow decay at shorter lags. The ARMA

estimation weights errors in the ACF at shorter lags more heavily, and thus the model

is likely to underestimate the ACF at higher lags. This conflict makes it difficult to

retain significant autocorrelation at short lags while incorporating the slow decay in

the ACF at higher lags. Kasdin [79] asserted that an infinite number of poles would

be required to reproduce the 1/ f form with an ARMA representation. The author

also pointed out that simulated data generated using these models cannot be scale-

invariant, and thus such models cannot incorporate self-similarity.

The parametric AM-FM model described in Eqs. 2.72 and 2.73 was demonstrated to

perform well with ocular aberration dynamics when used to fit a model to a small

data sample that had undergone low-pass filtering [84]. This method could be well

suited to the problem of model-based predictive control, which has previously been

proposed for adaptive optics control systems [126], though not specifically for appli-

cations relating to the eye. However, to accurately represent the long-term behaviour

of ocular aberration dynamics using this model would require a very large model

order and thus great computational complexity.

As detailed in Section 2.3.2, signals possessing long-term correlation and 1/f be-

haviour have been observed in many areas of physiology. Given that we have ob-

served similar characteristics in ocular aberration and accommodation signals, it was

felt that an alternative signal modelling approach that explicitly incorporates these

features is required. This is presented in the following section.

5.2 Power-Law Model

Given all that we have learned about the nature and characteristics of dynamic oc-

ular aberrations and accommodation, and having considered modelling approaches

with their respective strengths and weaknesses, we now proceed to develop the best

model that we can. The model is based on the assumption of a linear or piecewise-

2Here we refer to poles and zeros of a z-transform transfer function representation.
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linear power law structure of the PSD. Synthesis of signals is based on a modification

of an algorithm for the generation of power-law processes or coloured noise3, described

by Billah and Shinozuka [127]. This algorithm has also been utilised as the basis of

modelling approaches used in the field of EEG research. This is no surprise, given that

EEG signals have many similarities to ocular signals in terms of their non-stationarity,

power-law form of the spectral density, and dynamic range [128]. In particular, we re-

fer to elements of the non-stationary EEG modelling technique presented by Rankine

et al. [129].

The requirements we have for our models of dynamic aberrations and accommoda-

tion can be summarised as follows:

• The model should reflect closely the spectral structure of our measured ocular

dynamics, i.e., it should have a (piecewise) linear power-law spectral density

up to approximately 10 Hz.

• The model should be capable of representing and generating non-stationary sig-

nals in the manner of the measured data.

• The model should be capable of accounting for self-affine behaviour.

• As many characteristics of the measured data as possible should be represented

in simulated data generated from the model. These include the presence of mul-

tiple components, harmonic distortion, amplitude modulation, and frequency

modulation.

The piecewise power-law structure of the PSD is one of the most prominent and en-

during features of all the aberration and accommodation measurements gathered

throughout this thesis, and thus it constitutes a suitable basis for developing the

model.

Model Structure

We initially assume that the power spectral density of the process to be modelled can

be approximated by a power-law of the form:

P( f ) ≈ c

| f |γ (5.1)

3The term “coloured noise” refers to a loose characterisation of certain types of random signals based
on the form of their spectral density [79].
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where f = ω
2π is the cyclic frequency4, γ is the power-law exponent, and c is a constant.

In general, for a finite-length, continuous-time signal x(t), the power spectral density

can be written as [50]

P( f ) =
1

T
|X( f )|2 (5.2)

where X( f ) is the Fourier transform of x(t). Combining this representation of the

PSD with our proposed model, we set

Pm( f ) =
c

| f |γ =
1

T
|Xm( f )|2 (5.3)

where Pm refers to the modelled PSD. For synthesis, we write Xm( f ) in complex ex-

ponential form, i.e.,

Xm( f ) = |Xm( f )| ei arg(Xm( f )) (5.4)

The magnitude of Xm( f ) can be written as

|Xm( f )| =
√

Tc

| f |
γ
2

(5.5)

The phase spectrum is given by

arg(Xm( f )) = φm( f ) (5.6)

This leads us to the following expression for Xm( f ):

Xm( f ) =

√
Tc

| f |
γ
2

eiφm( f ) (5.7)

Synthesis of the time-domain signal from Xm( f ) can be achieved simply by taking the

inverse Fourier transform, i.e.,

xm(t) =
1√
2π

∫ ∞

−∞
Xm( f )e2πi f td f (5.8)

In practice, the method described above can be implemented on a computer using an

FFT algorithm. A detailed discussion of the discrete implementation of the algorithm

is given by Billah and Shinozuka [127]. Rankine et al. [129] suggested that the “rough-

ness” of real-world power spectra (as opposed to the “smooth” power-law form of the

model) could be approximated by implementing Eq. 5.7 for several different realisa-

4It is common in signal processing and control theory literature to use the angular frequency ω, but
for the sake of clarity we use the cyclic frequency f in this section.
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tions of φm( f ), and then summing together the resultant synthesised signals in the

time-domain.

Parameter Estimation

Perhaps the simplest method to estimate γ from a real signal is to estimate the neg-

ative gradient of the linear least-squares fit to a log-log plot of the PSD, with some

lower bound fmin on the region of power-law behaviour. This approach appears fre-

quently in the literature [77,78]. However, as we discussed in Section 2.3, standard re-

gression approaches can lead to significant bias. The problem can be mitigated some-

what by averaging multiple power spectrum estimates and choosing fmin conserva-

tively, however least-squares regression of this type should generally be avoided [77].

As discussed in Section 2.3, the Hill Estimator provides an alternative approach that

yields an asymptotically unbiased and consistent estimate. For modelling scenarios

where the PSD exhibited a linear slope, we employed the Hill Estimator to compute

an estimate of γ.

Billah and Shinozuka [127], as well as Kasdin [79], asserted that the phase spectrum

φ( f ) of a 1/ f process can be assumed to be composed of random phase angles uni-

formly distributed over the interval [0,2π]. For simulation purposes, a “surrogate”

phase spectrum can thus be provided using uniform random variates. We can there-

fore choose φm( f ) ∝ U(0,1) for simulation purposes, where the PDF of the continuous

uniform distribution U(a,b) on the interval [a,b] is defined by

f (x) =











1
b−a for a ≤ x ≤ b

0 otherwise

(5.9)

Two-Slope Model

As discussed in Chapter 4, the shape of the power spectrum of the accommodation

signal is state-dependent, i.e., it varies with the level of accommodative effort. For the

cases where the estimated PSD can be well approximated by two separate slopes, we

can adapt our model to allow for this. This is achieved simply by rewriting Eq. 5.7,

setting γ = γ( f ), with:

γ( f ) =











γ1 if f ≤ fbr

γ2 if f > fbr

(5.10)
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where γ1 and γ2 are constants representing estimates of the PSD slope for lower and

higher frequencies respectively. The two slope regions are separated by the breaking

frequency fbr. To estimate γ1 and γ2, we employed a constrained bilinear optimal fit

to the estimated PSD. This approach was discussed in detail in Section 4.5.2.

The two-slope model allows for good flexibility. Kasdin [79] stipulated that for 1/ f

processes, the stationarity of the process is related to the PSD slope on a log-log plot

as follows:

• A value of γ > 1 at low frequencies implies inherent non-stationarity of the

underlying process.

• Conversely, a value of 0 ≤ γ ≤ 1 at these lower frequencies implies that the

process is stationary.

Since γ1 corresponds to the slope of the lower frequency region of our power spec-

trum model, the value of γ1 effectively determines whether or not data generated

using the model will be stationary or non-stationary. An illustration of this effect is

given in Figure 5.1. The higher frequency slope was fixed to γ = 2, and an identical

random phase spectrum φm( f ) ∝ U(0,1) was used to generate signals with 5 differ-

ent values of γ1. As the value of γ1 exceeds unity, the non-stationarity of the signals

becomes evident via visual inspection (for example, the mean of the process wanders

significantly). We can consider the γ1 value to relate to the “statistical stability” of the

signal, rather than to stationarity in the mathematically defined sense. It is useful to

think of stationarity in this relative sense, as truly stationary signals are mathematical

constructs that do no not strictly occur in real-world data [60].

5.3 Simulation

As discussed previously, PSD estimates of the dynamics of ocular aberrations (when

measured at the far point) can be well approximated by a single slope up to approx-

imately 10 Hz. When subjects are accommodating, the PSD estimates of Zernike

modes take on a more complex shape [4], which could be better approximated with

the two-slope model. Each Zernike mode can be modelled separately, and simulated

data from these models can be combined to form a full simulation of wavefront dy-

namics.

The PSD estimates of ocular accommodation signals can be well approximated by a
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Figure 5.1: Illustration of the two-slope model, and its relationship to stationarity.
All signals were generated using the two-slope model, with identical phase spectrum
φm( f ) ∝ U(0,1). For γ1 > 1, non-stationary output was obtained.
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single slope at the far point (and in some cases at the near point), but a two-slope

structure is often observed, particularly when the subject is viewing in the intermedi-

ate range. Thus, the two-slope power-law model is best suited to these cases. From

Table 4.2, we noted that there is a strong difference between the two measured PSD

slope values m1 and m2 for all subjects, when viewing at the intermediate point. The

values of m1 below unity would in particular suggest that the accommodation dy-

namics tend to be stationary in these cases.

5.4 Validation of the Model

To assess the validity of our model, we generated signals from the model using pa-

rameters obtained directly from real data. From a measured signal, we determined

the measured phase spectrum, two fitted slope values, and power-law scale factor,

and used these as the model parameters φm( f ), γ1, γ2, and c respectively. We then

synthesised a time-domain representation using these model parameters. To justify

the use of the model, we must assess its validity. Unfortunately, for non-stationary

signal models, no well-established validation methodology exists [83].

In Section 2.2, we introduced the time-frequency coherence function. Time-frequency

coherence gives a normalised measure of the cross-correlation between spectral com-

ponents of two non-stationary processes. If we use measured signals to determine the

parameters of our model, we would expect that simulated data generated using this

model should have comparable spectral composition to the original signals. There-

fore, the time-frequency coherence between the original and simulated signals should

demonstrate a significant relationship between the two. With this reasoning, we can

use the time-frequency coherence function as an indicator of the performance of our

models.

Aberrations Signal Model

Figure 5.2 shows a comparison between a real dynamic aberration signal measure-

ment and a version generated using our model, with the model parameters deter-

mined from the original signal. The signal was a single 40 s realisation of Zernike

spherical aberration for subject CML. The estimated power-law exponent for this trial

was γ̂ = 1.6. Visual inspection of the simulated signal found that it bore much simi-

larity to the original. Periodograms of the real and simulated signals compared well

in terms of their overall shape. We also compared the real and modelled signals by
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Figure 5.2: Comparison between a realisation of an aberration signal and a version
generated using our model, with the model parameters determined from the original
signal. The signal is Zernike spherical aberration c0

4(t) for subject CML.

virtue of their time-frequency coherence. Figure 5.3 shows the time-frequency co-

herence between the real and modelled signals. The value of the time-frequency co-

herence function is considerably close to unity for most values of t and ω, and so

we conclude that the simulated signal has spectral content that is close to that of the

original measured signal from which the model parameters were estimated.

Accommodation Signal Model

Figure 5.4 shows a comparison between a real accommodation signal measurement

and a version generated using our model, with the model parameters determined

from the original signal. The measurement was of subject ED accommodating at

the intermediate point. The estimated power-law exponent values for this trial were

γ1 = 0.3 and γ2 = 4.0. Visual inspection of the simulated signal found it to be in close

agreement to the original. Periodograms of the real and simulated signals compared

well in terms of their overall shape. We also compared the real and modelled signals

by virtue of their time-frequency coherence. Figure 5.5 shows the time-frequency

coherence between the real and modelled signals. Again, the value of the time-

frequency coherence function is considerably close to unity for most values of t and
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Figure 5.3: Time-frequency coherence between real and simulated signals for Zernike
spherical aberration (Subject CML).

Figure 5.4: Comparison between a real accommodation signal measurement and a
version generated using our model, with the model parameters determined from the
original signal.
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Figure 5.5: Time-frequency coherence between real and simulated accommodation
signals for subject ED at the intermediate point.

ω. As with the aberrations signal model previously, we conclude that the simulated

signal has spectral content that is close to that of the original measured signal from

which the model parameters were estimated.

Modifications to the Model

We have identified several modifications to the model described above, which may

be of benefit. Rankine et al. [129] suggested that greater flexibility in modelling of

non-stationary data can be achieved by allowing the estimated power-law exponent

γ̂ to be time-varying, i.e., γ̂ = γ̂(t). While we do not agree with the authors that

a time-varying exponent is a necessity for modelling and generating non-stationary

signals, we have observed that γ̂ can vary significantly over a single epoch of data.

However, by allowing γ̂ to vary with time in our model, we observed only marginal

improvement in the model performance. This could be partly due to the difficulties

in validating model performance, however we feel that the potential benefits in al-

lowing γ̂ to be time-varying must be weighed against some drawbacks. Firstly, the

time-scales upon which γ varies significantly are difficult to determine. Secondly,

by attempting to estimate γ over shorter time-scales, one must take into account the
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additional bias in the estimates5.

For a single slope model, we made the assumption that the phase spectrum can be

modelled by uniform random variates. We carried this approach into the two-slope

model, however this may not be a reasonable assumption for the two-slope case. Fur-

ther study is required: for example, hypothesis testing of the actual measured phase

spectra of piecewise-linear slope power-law data to see if they differ significantly

from uniform variates.

It has also been proposed that physiological processes exhibiting 1/ f behaviour can

be modelled and simulated using fractional Brownian motion (fBm), a specific type

of Gaussian continuous time process. This method has been implemented for EEG by

Stevenson et al. [130]. The use of fBm is allows 1/ f processes to be modelled in such

a way that the increments are stationary and normally distributed with zero mean,

while taking into account the self-similarity properties. The statistical properties of

fBm are well defined, and it may have the advantage of being simpler to implement

than our coloured noise-based model.

Application of Models

In this chapter, we have presented a methodology for the simulation of complex non-

stationary physiological signals, namely dynamic ocular aberration and accommoda-

tion signals. We have demonstrated how the non-stationary and self-affine properties

of these signals can be modelled by using a power-law model of the spectral power.

Using a method based on coloured noise generation, we then simulated these pro-

cesses. The simulations produced data whose properties corresponded well to real

data in their time, frequency, and time-frequency content.

The model for the dynamics of ocular aberrations was originally conceived as a way

to extend static models of aberrations over a large population, such as the model

developed by Thibos et al. [19]. If the dynamic model parameters could be simi-

larly estimated over a large population, the authors’ idea of creating a database of

“virtual eyes” could be extended to include the dynamics of aberrations. A notable

feature of the accommodation signal is its dependence on the mean accommodative

effort. A model of dynamic accommodation could be extended to include this state-

dependence by modelling the relationship between the γ1, γ2, and c parameters and

the accommodative effort.

5For asymptotically unbiased estimators (such as the Hill estimator), performing estimation over
shorter data lengths increases the bias and is therefore undesirable.
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One property that we have not directly addressed in our modelling approach is the

non-linearity of aberration and accommodation signals. We previously discussed the

presence of harmonic distortion in our measured signals, which suggests the presence

of non-linearity. This is not surprising for a physiological process. Non-linearity has

been directly addressed in EEG signal models [83], and we feel that proper study of

non-linearity in ocular signals is also warranted, e.g., using bispectrum or bicoherence

analysis methods.
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Conclusions

In this thesis, we presented a study of the temporal dynamics and statistical charac-

teristics of ocular wavefront aberrations and accommodation. This was achieved us-

ing high-performance aberrometer technology. We made use of many analysis tools

and methodologies, some of which had not been applied to this type of physiological

process previously. We also presented a framework for the modelling and simula-

tion of the dynamic behaviour of ocular wavefront aberrations and accommodation,

which is based in part on properties uncovered through our analysis. This Chapter

is divided into two sections. Firstly, we will summarise and discuss the findings of

our work and their potential applications. We will then discuss topics derived from

this work that remained without investigation, but could potentially be addressed by

future research.

6.1 Summary of Thesis Work

Non-Stationarity of Ocular Aberrations and Accommodation

One of the recurring issues referred to throughout the course of this thesis was the is-

sue of temporal non-stationarity in the measured aberration and accommodation sig-

nals. It had been previously established that ocular aberrations exhibit non-stationary

temporal behaviour [15,16], and that accommodation measurements at a subject’s far

point contain low-frequency drifts [27]. We investigated the matter further by mea-
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suring aberrations and accommodation for different levels of accommodative effort,

and assessing their stationarity through different methods, to try to establish system-

atic features.

Our results showed that in the absence of a fixation stimulus, or with a fixation target

positioned at the far point, the temporal dynamics of aberrations and accommodation

tend to be non-stationary. However, given a fixation stimulus at an intermediate point

in the accommodative range, some subjects’ aberration and accommodation dynam-

ics showed increased statistical stability, to the point that many measurement trials

could be considered to be representative of a stationary process. The results also sug-

gested that experience may be a factor that endows subjects with improved statistical

stability in their accommodative response, as a greater number of stationary measure-

ment trials were obtained from the most experienced subjects. The phenomenon of

subjects’ learning leading to improved performance (and hence altered statistics) in a

motor task involving visual input was previously investigated by Cabrera et al. [118],

through a series of stick-balancing experiments. Our findings may have implications

in areas such as visual performance tests involving ocular adaptive optics.

Influence of Mean Accommodative Effort on Dynamics

We measured accommodation under four different viewing conditions to assess the

dependence of the dynamics and statistics of accommodation on the mean level of

effort. Previous authors had conducted studies of the effect of stimulus vergence

on mean accommodative response [38, 42], however we conducted our analysis by

comparing subjects with similar levels of accommodative effort. We endeavoured to

look for consistent trends from subject to subject, independent of their refractive error,

in order to characterise some features of the signals.

Our results showed differences in the characteristics of the measured accommodation

signal depending on the relative accommodative effort. At the intermediate point,

we computed a systematically more negative slope of the periodogram in the higher

frequency slope range, while at the far point (and with partial cycloplegia) the pe-

riodogram could be better fitted by a single straight line over the whole 0.2-10 Hz

range. The relatively large size of our sample (9 subjects) compared to previous work

enabled us to demonstrate these differences were consistent across subjects.
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1/ f Scaling of Dynamics

We used a combination of PSD estimation and time-frequency methods to analyse the

spectral content of our measured signals. All ocular wavefront sensor measurements

of more than a few seconds are afflicted by artifacts due to blinks, but we avoided this

problem in our PSD estimation by using the Lomb-Scargle periodogram instead of a

standard DFT-based method. This enabled us to estimate the power spectrum of our

data with flexible resolution and without artificially introducing interpolated data.

To our knowledge, this is the first time that this method has been applied in studies

of ocular dynamics, though it has been applied to other physiological signals [131].

We identified signs of 1/ f behaviour in the aberration and accommodation signals.

This is known to be a feature of processes that exhibit self-affine behaviour, and has

been identified in many other physiological processes (See Section 4.6), including the

heartbeat [82, 108, 132]. This is of particular interest, as the heartbeat is known to

correlate with aberration dynamics [18].

Long-Term Dependence of Accommodation

1/ f processes are associated with long-term dependence [78, 80]. This means that

the current value of the signal depends not only on its most recent value but also on

its long-term history. We examined the autocorrelation function of the increments in

accommodation, due to the fact that in general the ACF of a signal may be interpreted

as a measure of the memory in the system from which the signal arose [50]. We

observed notable differences between the ACF of the increments at the intermediate

point when compared to all the other viewing conditions (which resembled that of a

random walk, i.e. with no discernible correlation at lags other than zero). It is difficult

to draw conclusions from this presence of long-term correlation for the intermediate

point case, but it appears that the dynamics of the accommodation system are quite

different for intermediate viewing, compared to viewing at the far point or even at the

near point. It is also possible that the memory in the system could play some active

role in stabilising the accommodative response when the subject is viewing targets at

their intermediate point.

Potential Use for Models of Ocular Wavefront Dynamics

We presented a methodology for constructing models of the temporal dynamics of

ocular aberrations and accommodation. These models demonstrate a general frame-

work that could be adapted for several applications. Roberts [133] asserted that mea-
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suring and understanding the dynamic performance of the eye is critical to the future

development of advanced customised refractive surgeries, which is in itself important

for generating an overall improvement of refractive surgery results. Therefore, any

improvements in the measurement and modelling of dynamic aberrations could be

beneficial in areas such as the development of customised laser ablation algorithms

for refractive surgery. It has also been suggested that models of dynamic aberrations

could be adapted to aid in the testing of aberrometer designs, ocular adaptive optics

systems, or customised contact lenses [122].

6.2 Proposal of Further Work

Improvements in Modelling of Aberrations and Accommodation

One of the key elements of accommodation we have explored in this thesis is that its

statistical properties are state-dependent, i.e., the accommodation signal depends on

the mean level. We developed a model that can give an accurate representation of

these statistics for a given state. However, the model could be made more powerful

by explicitly specifying the relationship between the dynamic model parameters and

the level of accommodative effort. As we discussed in Section 5.4, a combination of

the dynamic model of aberrations with a static population model would also be a

significant improvement.

The dynamics of ocular wavefront aberrations and accommodation are significantly

influenced by pulse and respiration [18, 33, 95]. Ideally, this relationship should be

factored into any model of aberration and accommodation signals. We did not explic-

itly model the cardiopulmonary dynamics in our approach. They were not excluded

however, as our model is based on the overall shape of the PSD in the 0.1-10 Hz range,

which encompasses the contribution of pulse and respiration effects. A modelling ap-

proach that addresses the cardiopulmonary dynamics in a more direct manner would

give scope for improvement in accuracy. Another possible extension to the model is

the simulation of interference in the signals due to subjects’ blinking, including the

associated transient behaviour of the tear film.

The Role of Microfluctuations in the Control of Accommodation

As we discussed in Section 1.3, a role for the microfluctuations of accommodation has

been proposed by many authors [27, 37, 43, 47]. We hoped to contribute to this area
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of research by employing hardware and analysis techniques that had not previously

been utilised in the field of study. Winn et al. [31] performed experiments to deter-

mine the perceptual detectability of the microfluctuations by presenting a stimulus

modulated by measured accommodation signals to a subject under cycloplegia. This

study examined only 3 subjects and used accommodation measurements made with

a −4 D demand only, to modulate the stimulus.

We believe there is potential for our modelling and simulation techniques to be used

in an updated study of the perceptual detectability of microfluctuations. The original

study used RMS values to quantify the threshold for detection of the microfluctua-

tions, with the authors noting that the threshold value required was very similar to

the RMS of the measured response. This was an important result, which suggested

that the microfluctuations are capable of providing information to control accommo-

dation without the need for any sub-threshold control mechanism. However, as we

discussed in Section 4.4, the RMS can be a misleading quantity when dealing with

signals that may be non-stationary. We have also demonstrated that the spectral

power and statistical characteristics of the microfluctuations in accommodation can

vary considerably depending on the level of accommodative effort. Our model could

be adapted to provide simulated data that would more accurately reflect the statisti-

cal nature of the accommodation signal, and under several different accommodative

states as opposed to just one. Combined with a larger number of subjects, this could

lead to an interesting follow-up study to that of Winn et al. [48].

Accommodation Dynamics and the Development of Myopia

In Chapter 5, we discussed the association between sustained periods of near viewing

requiring high levels of accommodation and the development of myopia. It has been

shown that late-onset myopia (LOM) subjects exhibit differences in accommodative

response to sustained near visual tasks when compared to emmetropes. In particu-

lar, regression times from near to far after several minutes of near viewing have been

shown to be significantly longer for LOM subjects [123]. It has been proposed that

an anomaly in the accommodative control system may be a precursor to the develop-

ment of myopia. Gilmartin and Bullimore [124] have stated that it may be possible to

identify predisposing factors in young emmetropes that may indicate the potential for

LOM. Such findings could be used to improve the efficacy of treatment. Many of the

studies in this area have so far focused on the response of the accommodation system

to changes in stimulus demand. A possible future study could compare the tempo-

ral and statistical characteristics of the accommodative response for emmetropic and
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LOM subjects, with tasks involving a fixed stimulus (i.e., steady-state conditions),

in order to determine if there are any discernible differences between LOM and em-

metropic subjects under similar levels of relative accommodative effort.
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Appendix A: List of Symbols

A Accommodation signal

ak Autoregressive model parameters

bk Moving average model parameters

Cxx Autocovariance function

c Power-law scaling exponent

cm
n Zernike coefficient

E Expected value operator

F Cumulative distribution function

F Fourier transform operator

f Probability density function, cyclic frequency

r Radial distance

H Transfer function in z-domain

I Irradiance distribution

i Imaginary unit i =
√
−1

M Wavefront sensor slope matrix

m Sample lag

mi Slope value

N Series length

n Refractive index
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Pxx Power spectral density

Pxy Cross-spectral density

R Reconstructor matrix

Rm
n Radial polynomials

Rxx Autocorrelation function

Rxy Cross-correlation function

r Radial distance

rxx Autocorrelation coefficient

T Time period

t Time

U Uniform distribution

u Complex amplitude of wave function

W Wave aberration

W Time-frequency distribution

w Window function

Zm
n Zernike circle polynomials

z Position along the optical axis

α Power-law exponent

Γxy Coherence function

γ Slope of spectral density

∆ Difference operator

δm0 Kronecker delta function

ǫ Modelling error

ǫp Prediction error

η Outcome of stochastic process

θ Azimuthal angle co-ordinate

λ Wavelength

µ Mean

µt Time average

ν White noise disturbance

ρ Radial co-ordinate
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ρc Centroid

σ Standard deviation

τ Time lag

τc Correlation time

Φ Smoothing kernel function

φ Phase angle

ω Angular frequency
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Appendix B: Glossary

ACF Autocorrelation function

AM Amplitude modulation

ANSI American National Standards Institute

AR Autoregressive

ARIMA Autoregressive integrated moving average

ARMA Autoregressive moving average

CCD Charge-coupled device

CDF Cumulative distribution function

CMOS Complimentary metal-oxide-semiconductor

FBM Fractional Brownian motion

FM Frequency modulation

DFT Discrete Fourier transform

ECG Electrocardiogram

EEG Electroencephalogram

FFT Fast Fourier transform

LED Light-emitting diode

LOM Late-onset myopia

LSSA Least-squares spectral analysis
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LTI Linear time-invariant

PDF Probability density function

PRK Photorefractive keratectomy

PSD Power spectral density

RMS Root mean square

STFT Short-Term Fourier transform

TFR Time-frequency representation

WSS Wide-sense stationary

ZAM Zhao-Atlas-Marks
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